1887

Abstract

At least eight species of can cause human infection and disease. A real-time PCR (qPCR) assay based on the 18S rRNA gene and utilizing a Scorpion probe was developed to detect all human-pathogenic without the usual need for nested amplification. Sensitivity of detection in stool samples was highest using a glass bead-based DNA extraction method (under 10 oocysts per stool sample). The assay was validated against 123 human stool specimens from Bangladesh and Tanzania, exhibited a sensitivity and specificity of >91 % versus microscopy, and detected an additional eight microscopy-negative infections. -specific and -specific Scorpion qPCR assays that provided 100 % accurate speciation compared with I RFLP analysis and sequencing were developed subsequently. These Scorpion probe qPCR assays are simpler to perform than existing nested PCR and RFLP methods for diagnosis and epidemiological investigation of cryptosporidiosis.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46678-0
2006-09-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jmm/55/9/1217.html?itemId=/content/journal/jmm/10.1099/jmm.0.46678-0&mimeType=html&fmt=ahah

References

  1. Amar C. F., Dear P. H., McLauchlin J. 2004; Detection and identification by real time PCR/RFLP analyses of Cryptosporidium species from human faeces. Lett Appl Microbiol 38:217–222 [CrossRef]
    [Google Scholar]
  2. Bialek R., Binder N., Dietz K., Joachim A., Knobloch J., Zelck U. E. 2002; Comparison of fluorescence, antigen and PCR assays to detect Cryptosporidium parvum in fecal specimens. Diagn Microbiol Infect Dis 43:283–288 [CrossRef]
    [Google Scholar]
  3. Cama V. A., Bern C., Sulaiman I. M. & 7 other authors; 2003; Cryptosporidium species and genotypes in HIV-positive patients in Lima, Peru. J Eukaryot Microbiol 50:Suppl.531–533 [CrossRef]
    [Google Scholar]
  4. Coupe S., Sarfati C., Hamane S., Derouin F. 2005; Detection of Cryptosporidium and identification to the species level by nested PCR and restriction fragment length polymorphism. J Clin Microbiol 43:1017–1023 [CrossRef]
    [Google Scholar]
  5. Gatei W., Greensill J., Ashford R. W., Cuevas L. E., Parry C. M., Cunliffe N. A., Beeching N. J., Hart C. A. 2003; Molecular analysis of the 18S rRNA gene of Cryptosporidium parasites from patients with or without human immunodeficiency virus infections living in Kenya, Malawi, Brazil, the United Kingdom, and Vietnam. J Clin Microbiol 41:1458–1462 [CrossRef]
    [Google Scholar]
  6. Higgins J. A., Fayer R., Trout J. M., Xiao L., Lal A. A., Kerby S., Jenkins M. C. 2001; Real-time PCR for the detection of Cryptosporidium parvum . J Microbiol Methods 47:323–337 [CrossRef]
    [Google Scholar]
  7. Hlavsa M. C., Watson J. C., Beach M. J. 2005; Cryptosporidiosis surveillance – United States 1999–2002. MMWR Surveill Summ 54:1–8
    [Google Scholar]
  8. Houpt E. R., Bushen O. Y., Sam N. E. & 8 other authors; 2005; Short report: asymptomatic Cryptosporidium hominis infection among human immunodeficiency virus-infected patients in Tanzania. Am J Trop Med Hyg 73:520–522
    [Google Scholar]
  9. Hunter P. R., Hughes S., Woodhouse S., Raj N., Syed Q., Chalmers R. M., Verlander N. Q., Goodacre J. 2004; Health sequelae of human cryptosporidiosis in immunocompetent patients. Clin Infect Dis 39:504–510 [CrossRef]
    [Google Scholar]
  10. Jiang J., Xiao L. 2003; An evaluation of molecular diagnostic tools for the detection and differentiation of human-pathogenic Cryptosporidium spp. J Eukaryot Microbiol 50:Suppl.542–547 [CrossRef]
    [Google Scholar]
  11. Kostrzynska M., Sankey M., Haack E. & 8 other authors; 1999; Three sample preparation protocols for polymerase chain reaction based detection of Cryptosporidium parvum in environmental samples. J Microbiol Methods 35:65–71 [CrossRef]
    [Google Scholar]
  12. Morgan U. M., Pallant L., Dwyer B. W., Forbes D. A., Rich G., Thompson R. C. 1998; Comparison of PCR and microscopy for detection of Cryptosporidium parvum in human fecal specimens: clinical trial. J Clin Microbiol 36:995–998
    [Google Scholar]
  13. Okhuysen P. C., Chappell C. L., Crabb J. H., Sterling C. R., DuPont H. L. 1999; Virulence of three distinct Cryptosporidium parvum isolates for healthy adults. J Infect Dis 180:1275–1281 [CrossRef]
    [Google Scholar]
  14. Ong C. S., Eisler D. L., Alikhani A., Fung V. W., Tomblin J., Bowie W. R., Isaac-Renton J. L. 2002; Novel Cryptosporidium genotypes in sporadic cryptosporidiosis cases: first report of human infections with a cervine genotype. Emerg Infect Dis 8:263–268 [CrossRef]
    [Google Scholar]
  15. Pedraza-Díaz S., Amar C., Iversen A. M., Stanley P. J., McLauchlin J. 2001; Unusual Cryptosporidium species recovered from human faeces: first description of Cryptosporidium felis and Cryptosporidium ‘dog type’ from patients in England. J Med Microbiol 50:293–296
    [Google Scholar]
  16. Reed C., Sturbaum G. D., Hoover P. J., Sterling C. R. 2002; Cryptosporidium parvum mixed genotypes detected by PCR-restriction fragment length polymorphism analysis. Appl Environ Microbiol 68:427–429 [CrossRef]
    [Google Scholar]
  17. Tumwine J. K., Kekitiinwa A., Bakeera-Kitaka S., Ndeezi G., Downing R., Feng X., Akiyoshi D. E., Tzipori S. 2005; Cryptosporidiosis and microsporidiosis in Ugandan children with persistent diarrhea with and without concurrent infection with the human immunodeficiency virus. Am J Trop Med Hyg 73:921–925
    [Google Scholar]
  18. Xiao L., Bern C., Limor J., Sulaiman I., Roberts J., Checkley W., Cabrera L., Gilman R. H., Lal A. A. 2001; Identification of 5 types of Cryptosporidium parasites in children in Lima, Peru. J Infect Dis 183:492–497 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46678-0
Loading
/content/journal/jmm/10.1099/jmm.0.46678-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error