1887

Abstract

The acidic repeat protein () genes from three subspecies of the treponeme ( subsp. , Nichols strain; subsp. , CDC-1 and CDC-2 strains; and subsp. , Bosnia A strain) were cloned and sequenced. The predicted protein sequence contained a high percentage of glutamic acid, hence the name acidic repeat protein, or Arp. The protein had a potential membrane-spanning domain and a signal peptidase I site. The gene from the Nichols strain of subsp. contained a set of 14 nearly identical repeats of a 60 bp sequence, which occupied ∼51 % of the length of the gene. Analyses of from laboratory strains showed that the 5′ and 3′ ends of the genes were conserved, but there was considerable heterogeneity in the number of repeats of this 60 bp sequence. Based on amino acid variations, the 14 sequence repeats could be classified into three types, which were named type I, type II and type III repeats. The type II repeat was the most common in the strains examined. The gene of the Nichols strain was subsequently cloned into the expression vector pBAD/TOPO ThioFusion. The expressed protein was detected in a Western blot assay using rabbit immune sera produced against , or synthetic peptides derived from the repeat sequences. Using an ELISA, rapid plasma reagin (RPR) test-positive sera reacted with synthetic peptides derived from the repeat region but not with peptides derived from N and C termini of the Arp protein. These results show that the Arp protein is immunogenic and could prove to be a useful target for serological diagnosis of infection.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.46943-0
2007-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/6/715.html?itemId=/content/journal/jmm/10.1099/jmm.0.46943-0&mimeType=html&fmt=ahah

References

  1. Anders R. F., Coppel R. L., Brown G. V., Kemp D. J. 1988; Antigens with repeated sequences from the asexual blood stages of Plasmodium falciparum . Prog Allergy 41:148–172
    [Google Scholar]
  2. Anderson B. E., McDonald G. A., Jones D. C., Regnery R. L. 1990; A protective protein antigen of Rickettsia rickettsii has tandemly repeated, near-identical sequences. Infect Immun 58:2760–2769
    [Google Scholar]
  3. Andrade M. A., Perez-Iratxeta C., Ponting C. P. 2001; Protein repeats: structures, functions, and evolution. J Struct Biol 134:117–131 [CrossRef]
    [Google Scholar]
  4. Chamberlain N. R., Brandt M. E., Erwin A. L., Radolf J. D., Norgard M. V. 1989; Major integral membrane protein immunogens of Treponema pallidum are proteolipids. Infect Immun 57:2872–2877
    [Google Scholar]
  5. Cox D. L. 1994; Culture of Treponema pallidum . Methods Enzymol 236:390–405
    [Google Scholar]
  6. Cox D., Liu H., Moreland A., Levine W. 2003; Syphilis. In An Atlas of STD p p– 23 Edited by Morse S. A., Ballard R. New York: Mosby Publisher;
    [Google Scholar]
  7. Deitsch K. W., Moxon E. R., Wellems T. E. 1997; Shared themes of antigenic variation and virulence in bacterial, protozoal, and fungal infections. Microbiol Mol Biol Rev 61:281–293
    [Google Scholar]
  8. Eisenberg D., Bowie J. U., Luthy R., Choe S. 1992; Three-dimensional profiles for analysing protein sequence-structure relationships. Faraday Discuss 93:25–34 [CrossRef]
    [Google Scholar]
  9. Felger I., Marshall V. M., Reeder J. C., Hunt J. A., Mgone C. S., Beck H. P. 1997; Sequence diversity and molecular evolution of the merozoite surface antigen 2 of Plasmodium falciparum . J Mol Evol 45:154–160 [CrossRef]
    [Google Scholar]
  10. Fraser C. M., Norris S. J., Weinstock G. M., White O., Sutton G. G., Dodson R., Gwinn M., Hickey E. K., Clayton R. other authors 1998; Complete genome sequence of Treponema pallidum , the syphilis spirochete. Science 281:375–388 [CrossRef]
    [Google Scholar]
  11. Garnier J., Osguthorpe D. J., Robson B. 1978; Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 25:97–120
    [Google Scholar]
  12. Gravekamp C., Horensky D. S., Michel J. L., Madoff L. C. 1996; Variation in repeat number within the alpha C protein of group B streptococci alters antigenicity and protective epitopes. Infect Immun 64:3576–3583
    [Google Scholar]
  13. Harbaugh M. P., Podbielski A., Hugl S., Cleary P. P. 1993; Nucleotide substitutions and small-scale insertions produce size and antigenic variation in group A streptococcal M1 protein. Mol Microbiol 8:981–991 [CrossRef]
    [Google Scholar]
  14. Hollingshead S. K., Fischetti V. A., Scott J. R. 1987; Size variation in group A streptococcal M protein is generated by homologous recombination between intragenic repeats. Mol Gen Genet 207:196–203 [CrossRef]
    [Google Scholar]
  15. Hood D. W., Deadman M. E., Allen T., Masoud H., Martin A., Brisson J. R., Fleischmann R., Ventor J. C., Richards J. C., Moxon E. R. 1996; DNA repeats identify novel virulence genes in Haemophilus influenzae . Proc Natl Acad Sci U S A 93:11121–11125 [CrossRef]
    [Google Scholar]
  16. Jameson B. A., Wolf H. 1988; The antigenic index: a novel algorithm for predicting antigenic determinants. Bioinformatics 4:181–186 [CrossRef]
    [Google Scholar]
  17. Joh H. J., House-Pompeo K., Patti J. M., Gurusiddappa S., Magnus H. 1994; Fibronectin receptors from Gram-positive bacteria: comparison of active sites. Biochemistry 33:6086–6092 [CrossRef]
    [Google Scholar]
  18. Kajava A. V. 2001; Review: proteins with repeated sequence – structural prediction and modeling. J Struct Biol 134:132–144 [CrossRef]
    [Google Scholar]
  19. Kruglyak S., Durrett R. T., Schug M. D., Aquadro C. F. 1998; Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc Natl Acad Sci U S A 95:10774–10778 [CrossRef]
    [Google Scholar]
  20. Liu H. 2004; Treponema pallidum, Treponema pertenue, Treponema endemicum and Treponema carateum. In Encyclopedia of Diagnostic Genomics and Proteomics Edited by Fuchs J., Podda M. New York: Marcel Dekker;
    [Google Scholar]
  21. McGavin M. J., Gurusiddappa S., Lindgren P.-E., Lindberg M., Raucci G., Hook M. 1993; Fibronectin receptors from Streptococcus dysgalactiae and Staphylococcus aureus : involvement of conserved residues in ligand binding. J Biol Chem 268:23946–23953
    [Google Scholar]
  22. Moxon E. R., Rainey P. B., Nowak M. A., Lenski R. E. 1994; Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr Biol 4:24–33 [CrossRef]
    [Google Scholar]
  23. Pillay A., Liu H., Chen C. Y., Holloway B., Sturm A. W., Steiner B., Morse S. A. 1998; Molecular subtyping of Treponema pallidum subspecies pallidum . Sex Transm Dis 25:408–414 [CrossRef]
    [Google Scholar]
  24. Pillay A., Liu H., Ebrahim S., Chen C. Y., Lai W., Fehler G., Ballard R. C., Steiner B., Strum A. W., Morse S. A. 2002; Molecular typing of Treponema pallidum in South Africa: cross-sectional studies. J Clin Microbiol 40:256–258 [CrossRef]
    [Google Scholar]
  25. Pope V., Fox K., Liu H., Marfin A. A., Leone P., Sena A. C., Chapin J., Fears M. B., Markowitz L. 2005; Molecular subtyping of Treponema pallidum from North and South Carolina. J Clin Microbiol 43:3743–3746 [CrossRef]
    [Google Scholar]
  26. Radolf J. D. 1994; Role of outer membrane architecture in immune evasion by Treponema pallidum and Borrelia burgdoferi . Trends Microbiol 2:307–311 [CrossRef]
    [Google Scholar]
  27. Radolf J. D. 1995; Treponema pallidum and the quest for outer membrane proteins. Mol Microbiol 16:1067–1073 [CrossRef]
    [Google Scholar]
  28. Rakonjac J. V., Robbins J. C., Fischetti V. A. 1995; DNA sequence of the serum opacity factor of group A streptococci: identification of a fibronectin-binding repeat domain. Infect Immun 63:622–631
    [Google Scholar]
  29. Rodes B., Liu H., George R., Johnson S., Steiner B. 2000; Cloning and characterization of a gene ( polA ) coding for an unusual DNA polymerase I from Treponema pallidum . J Med Microbiol 49:657–667
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Schiffer M., Chang C. H., Stevens F. J. 1992; The functions of tryptophan residues in membrane proteins. Protein Eng 5:213–214 [CrossRef]
    [Google Scholar]
  32. Shevchenko D. V., Akins D. R., Robinson E., Li M., Popova T. G., Cox D. L., Radolf J. D. 1997; Molecular characterization and cellular localization of TpLRR, a processed leucine-rich repeat protein of Treponema pallidum , the syphilis spirochete. J Bacteriol 179:3188–3195
    [Google Scholar]
  33. Stamm L. V. 1999; Biology of Treponema pallidum . . In Sexually Transmitted Diseases pp 467–472 Edited by Holmes K. K., Sparling P. F., Mardh P.-A., Lemon S. M., Stamm W. E., Piot P., Wasserheit J. N. New York: McGraw-Hill;
    [Google Scholar]
  34. Struyve M., Moons M., Tommassen J. 1991; Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. J Mol Biol 218:141–148 [CrossRef]
    [Google Scholar]
  35. Sutton M. Y., Liu H., Steiner B., Pillay A., Mickey T., Finelli L., Morse S., Markowitz L., St Louis M. E. 2001; Molecular subtyping of Treponema pallidum : application to a syphilis outbreak and use of blood as a new specimen. J Infect Dis 183:1601–1606 [CrossRef]
    [Google Scholar]
  36. Thole J. E. R., Stabel L. F. E. M., Suykerbuiy M. E. G., DeWit M. Y. L., Klatser P. R., Kolk A. H. J., Hartskeeri R. A. 1990; A major immunogenic 36,000-molecular-weight antigen from Mycobacterium leprae contains an immunoreactive region of proline-rich repeats. Infect Immun 58:80–87
    [Google Scholar]
  37. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedures and some applications. Proc Natl Acad Sci U S A 76:4350–4354 [CrossRef]
    [Google Scholar]
  38. Yelton D. B., Limberger R. J., Curci K., Malinosky-Rummell F., Slivienski L., Schouls L. M., Van Embden J. D., Charon M. W. 1991; Treponema phagedenis encodes and expresses homologs of the Treponema pallidum TmpA and TmpB proteins. Infect Immun 59:3685–3693
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.46943-0
Loading
/content/journal/jmm/10.1099/jmm.0.46943-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error