1887

Abstract

Fine-scale genotyping methods are necessary in order to identify possible sources of human exposure to opportunistic pathogens belonging to the complex (MAC). In this study, amplified fragment length polymorphism (AFLP) analysis was evaluated for fingerprinting 159 patient and environmental MAC isolates from southern California. AFLP analysis accurately identified strains belonging to and and differentiated between strains within each species. The method was also able to differentiate strains that were presumed to be genetically identical in two previous studies using large RFLP analysis with PFGE, or PCR-amplification of DNA segments located between insertion sequences IS and IS. For , drinking-water isolates clustered more closely with each other than with patient or food isolates. Patient isolates were more genetically diverse. None of the environmental isolates shared identical AFLP patterns with patient isolates for either species. There were, however, environmental isolates that shared identical patterns, and patient isolates that shared identical patterns. A subset of the isolates, which are referred to as MX isolates due to their ambiguous identification with the Gen-Probe system, produced AFLP patterns similar to those obtained from isolates. Sequence analysis of 16S rDNA obtained from the MX isolates suggests that they are strains of that were not correctly identified by the AccuProbe from Gen-Probe.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47075-0
2007-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/9/1152.html?itemId=/content/journal/jmm/10.1099/jmm.0.47075-0&mimeType=html&fmt=ahah

References

  1. Arnold C., Metherell L., Willshaw G., Maggs A., Stanley J. 1999; Predictive fluorescent amplified-fragment length polymorphism analysis of Escherichia coli : high-resolution typing method with phylogenetic significance. J Clin Microbiol 37:1274–1279
    [Google Scholar]
  2. Aronson T., Holtzman A., Glover N., Boian M., Froman S., Berlin O. G. W., Hill H., Stelma G. Jr 1999; Comparison of large restriction fragments of Mycobacterium avium isolates recovered from AIDS and non-AIDS patients with those isolates from potable water. J Clin Microbiol 37:1008–1012
    [Google Scholar]
  3. Bauer J., Andersen A. B., Askgaard D., Giese S. B., Larsen B. 1999; Typing of clinical Mycobacterium avium complex strains cultured during a 2-year period in Denmark by using IS 1245 . J Clin Microbiol 37:600–605
    [Google Scholar]
  4. Biet F., Boschiroli M. L., Thorel M. F., Guilloteau L. A. 2005; Zoonotic aspects of Mycobacterium bovis and Mycobacterium avium - intracellulare complex (MAC). Vet Res 36:411–436 [CrossRef]
    [Google Scholar]
  5. Blears M. J., De Grandis S. A., Lee H., Trevors J. T. 1998; Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. J Ind Microbiol Biotechnol 21:99–114 [CrossRef]
    [Google Scholar]
  6. Burke S. A., Wright J. D., Robinson M. K., Bronk B. V., Warren R. L. 2004; Detection of molecular diversity in Bacillus atrophaeus by amplified fragment length polymorphism analysis. Appl Environ Microbiol 70:2786–2790 [CrossRef]
    [Google Scholar]
  7. Cangelosi G. A., Freeman R. J., Lewis K. N., Lingingston-Rosanoff D., Shah K. S., Milan S. J., Goldberg S. V. 2004; Evaluation of a high-throughput repetitive-sequence-based PCR system for DNA fingerprinting of Mycobacterium tuberculosis and Mycobacterium avium complex strains. J Clin Microbiol 42:2685–2693 [CrossRef]
    [Google Scholar]
  8. Cappelluti E., Fraire A. E., Schaefer O. P. 2003; A case of ‘hot tub lung’ due to Mycobacterium avium complex in an immunocompetent host. Arch Intern Med 163:845–848 [CrossRef]
    [Google Scholar]
  9. Chemlal K., Huys G., Fonteyne P. A., Vincent V., Lopez A. G., Rigouts L., Swings J., Meyers W. M., Portaels F. 2001; Evaluation of PCR-restriction profile analysis and IS 2404 restriction fragment polymorphism fingerprinting for identification and typing of Mycobacterium ulcerans and M. marinum . J Clin Microbiol 39:3272–3278 [CrossRef]
    [Google Scholar]
  10. Covert T. C., Rodgers M. R., Reyes A. L., Stelma G. N. Jr 1999; Occurrence of nontuberculous mycobacteria in environmental samples. Appl Environ Microbiol 65:2492–2496
    [Google Scholar]
  11. De Groote M. A., Pace N. R., Fulton K., Falkinham J. O. III 2006; Relationships between Mycobacterium isolates from patients with pulmonary mycobacterial infection and potting soils. Appl Environ Microbiol 72:7602–7606 [CrossRef]
    [Google Scholar]
  12. Dvorska L., Bartos M., Ostadal O., Kaustova J., Matlova L., Pavlik I. 2002; IS 1311 and IS 1245 restriction fragment length polymorphism analyses, serotypes, and drug susceptibilities of Mycobacterium avium complex isolates obtained from a human immunodeficiency virus-negative patient. J Clin Microbiol 40:3712–3719 [CrossRef]
    [Google Scholar]
  13. Evans M. J., Smith N. M., Thornton C. M., Youngson G. G., Gray E. S. 1998; Atypical mycobacterial lymphadenitis in childhood – a clinicopathological study of 17 cases. J Clin Pathol 51:925–927 [CrossRef]
    [Google Scholar]
  14. Felsenstein J. 2004 Inferring Phylogenies p– 239 Sunderland, MA: Sinauer Associates, Inc;
    [Google Scholar]
  15. Gaafar A., Unzaga M. J., Cisterna R., Clavo F. E., Urra E., Ayarza R., Martin G. 2003; Evaluation of a modified single-enzyme amplified-fragment length polymorphism technique for fingerprinting and differentiating of Mycobacterium kansasii type I isolates. J Clin Microbiol 41:3846–3850 [CrossRef]
    [Google Scholar]
  16. Garriga X., Cortes P., Rodriguez P., March F., Prats G., Coll P. 2000; Comparison of IS 1245 restriction fragment length polymorphism and pulsed-field gel electrophoresis for typing clinical isolates of Mycobacterium avium subsp. avium . Int J Tuberc Lung Dis 4:463–472
    [Google Scholar]
  17. Horsburgh C. R. Jr, Havlik J. A., Ellis D. A., Kennedy E., Fann S. A., Dubois R. E., Thompson S. E. 1991; Survival of patients with acquired immune deficiency syndrome and disseminated Mycobacterium avium complex infection with and without antimycobacterial chemotherapy. Am Rev Respir Dis 144:557–559 [CrossRef]
    [Google Scholar]
  18. Huys G., Rigouts L., Chemlal K., Portaels F., Swings J. 2000; Evaluation of amplified fragment length polymorphism analysis for inter- and intraspecific differentiation of Mycobacterium bovis , M. tuberculosis , and M. ulcerans . J Clin Microbiol 38:3675–3680
    [Google Scholar]
  19. Iseman M. D. 1995; M. avium complex: an emerging respiratory pathogen. J Respir Dis 16:950–962
    [Google Scholar]
  20. Janssen P., Dijkshoorn L. 1996; High resolution DNA fingerprinting of Acinetobacter outbreak strains. FEMS Microbiol Lett 142:191–194 [CrossRef]
    [Google Scholar]
  21. Johansen T. B., Olsen I., Jensen M. R., Dahle U. R., Holstad G., Djonne B. 2007; New probes used for IS 1245 and IS 1311 restriction fragment length polymorphism of Mycobacterium avium subsp. avium and Mycobacterium avium subsp. hominissuis isolates of human and animal origin in Norway. BMC Microbiol 7:14 [CrossRef]
    [Google Scholar]
  22. Jones S. W., Dobson M. E., Francesconi S. C., Schoske R., Crawford R. 2005; DNA assays for detection, identification, and individualization of select agent microorganisms. Croat Med J 46:522–529
    [Google Scholar]
  23. Keim P., Kalif A., Schupp J., Hill K., Travis S. E., Richmond K., Adair D. M., Hugh-Jones M., Kuske C. R., Jackson P. 1997; Molecular evolution and diversity in Bacillus anthracis as detected by amplified fragment length polymorphism analysis. J Bacteriol 179:818–824
    [Google Scholar]
  24. Keller A. P., Beggs M. L., Amthor B., Bruns F., Meissner P., Haas W. H. 2002; Evidence of the presence of IS 1245 and IS 1311 or closely related insertion elements in nontuberculous mycobacteria outside of the Mycobacterium avium complex. J Clin Microbiol 40:1869–1872 [CrossRef]
    [Google Scholar]
  25. Lindstedt B.-A., Heir E., Vardund T., Kapperud G. 2000; Fluorescent amplified-fragment length polymorphism genotyping of Salmonella enterica subsp. enterica serovars and comparison with pulsed-field gel electrophoresis typing. J Clin Microbiol 38:1623–1627
    [Google Scholar]
  26. Lumb R., Stapledon R., Scroop A., Bond P., Cunliffe D., Goodwin A., Doyle R., Bastiani I. 2004; Investigation of spa pools associated with lung disorders caused by Mycobacterium avium complex in immunocompetent adults. Appl Environ Microbiol 70:4906–4910 [CrossRef]
    [Google Scholar]
  27. Moreno Y., Ferrús M. A., Vanoostende A., Hernández M., Montes R. M., Hernádez J. 2002; Comparison of 23S polymerase chain reaction-restriction fragment length polymorphism and amplified fragment length polymorphism techniques as typing systems for thermophilic campylobacters. FEMS Microbiol Lett 211:97–103
    [Google Scholar]
  28. Motilwala A. S., Strother M., Amonsin A., Byrum B., Naser S. A., Stabel J. R., Shulaw W. P., Bannantine J. P., Kapur V., Streevatsan S. 2003; Molecular epidemiology of Mycobacterium avium subsp. paratuberculosis : evidence for limited strain diversity, strain sharing, and identification of unique targets for diagnosis. J Clin Microbiol 41:2015–2026 [CrossRef]
    [Google Scholar]
  29. Myojo M., Fujiuchi S., Matsumoto H., Yamazaki Y., Takahashi M., Satoh K., Takeda A., Nishigaki Y., Okamoto K. other authors 2003; Disseminated Mycobacterium avium complex (DMAC) in an immunocompetent adult. Int J Tuberc Lung Dis 7:498–501
    [Google Scholar]
  30. Nei M., Li W.-H. 1979; Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A 76:5269–5273 [CrossRef]
    [Google Scholar]
  31. O'Shea B., Khare S., Bliss K., Klein P., Ficht T. A., Adams L. G., Rice-Ficht A. C. 2004; Amplified fragment length polymorphism reveals genomic variability among Mycobacterium avium subsp. paratuberculosis isolates. J Clin Microbiol 42:3600–3606 [CrossRef]
    [Google Scholar]
  32. Picardeau M., Prod'hom G., Raskine L., LePennec M. P., Vincent V. 1997; Genotypic characterization of five subspecies of Mycobacterium kansasii . J Clin Microbiol 35:25–32
    [Google Scholar]
  33. Prince D. S., Peterson D. D., Steiner R. M., Gottlieb J. E., Scott R., Israel H. L., Figueroa W. G., Fish J. E. 1989; Infection with Mycobacterium avium complex in patients without predisposing conditions. N Engl J Med 32:863–868
    [Google Scholar]
  34. Reischl U., Pulz M., Werner E., Wolf H. 1994; PCR-based detection of mycobacteria in sputum samples using a simple and reliable DNA extraction protocol. Biotechniques 17:844–845
    [Google Scholar]
  35. Roiz M. P., Palenque E., Guerrero C., Garcia M. J. 1995; Use of restriction fragment length polymorphism as a genetic marker for typing Mycobacterium avium strains. J Clin Microbiol 33:1389–1391
    [Google Scholar]
  36. Smole S. C., McAleese F., Ngampasutadol J., von Reyn C. F., Arbeit R. D. 2002; Clinical and epidemiological correlates of genotypes within the Mycobacterium avium complex defined by restriction and sequence analysis of hsp65 . J Clin Microbiol 40:3374–3380 [CrossRef]
    [Google Scholar]
  37. Swofford D. L. 2002 paup*. Phylogenetic analysis using parsimony (* and other methods), version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  38. Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., Swaminathan B. 1995; Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239
    [Google Scholar]
  39. Tobin-D'Angelo M. J., Blass M. A., del Rio C., Halvosa J. S., Blumberg H. M., Horsburgh C. R. Jr 2004; Hospital water as a source of Mycobacterium avium complex isolates in respiratory specimens. J Infect Dis 189:98–104 [CrossRef]
    [Google Scholar]
  40. Valsangiacomo C., Baggi F., Gaia V., Balmelli T., Peduzzi R., Piffaretti J.-C. 1995; Use of amplified fragment length polymorphism in molecular typing of Legionella pneumophila and application to epidemiological studies. J Clin Microbiol 33:1716–1719
    [Google Scholar]
  41. van den Braak N., Simons G., Gorkink R., Reijans M., Eadie K., Kremers K., van Soolingen D., Savelkoul P., Verbrugh H., van Belkum A. 2004; A new high-throughput AFLP approach for identification of new genetic polymorphism in the genome of the clonal microorganism Mycobacterium tuberculosis . J Microbiol Methods 56:49–62 [CrossRef]
    [Google Scholar]
  42. von Reyn C. F., Maslow J. N., Barber T. W., Falkinham J. O. III, Arbeit R. D. 1994; Persistent colonization of potable water as a source of Mycobacterium avium infection in AIDS. Lancet 343:1137–1141 [CrossRef]
    [Google Scholar]
  43. von Reyn C. F., Arbeit R. D., Horsburgh C. R., Ristola M. A., Waddell R. D., Tvaroha S. M., Samore M., Hirschhorn L. R., Lumio J. other authors 2002; Sources of disseminated Mycobacterium avium infection in AIDS. J Infect 44:166–170 [CrossRef]
    [Google Scholar]
  44. Vos P., Hogers R., Bleeker M., Reijans M., Van De Lee T., Hornes M., Friters A., Pot J., Paleman J. other authors 1995; AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414 [CrossRef]
    [Google Scholar]
  45. Wallace R. J. Jr 1994; Mycobacterium avium complex lung disease in women: now an equal opportunity disease. Chest 105:6–7 [CrossRef]
    [Google Scholar]
  46. Wallace R. J. Jr, Zhang Y., Brown B. A., Dawson D., Murphy D. T., Wilson R., Griffith D. E. 1998; Polyclonal Mycobacterium avium complex infections in patients with nodular bronchiectasis. Am J Respir Crit Care Med 158:1235–1244 [CrossRef]
    [Google Scholar]
  47. Wayne L. G., Good R. C., Bottger E. C., Butler R., Dorsch M., Ezaki T., Gross W., Jonas V., Kilburn J. other authors 1996; Semantide- and chemotaxonomy-based analyses of some problematic phenotypic clusters of slowly growing mycobacteria, a cooperative study of the International Working Group on Mycobacterial Taxonomy. Int J Syst Bacteriol 46:280–297 [CrossRef]
    [Google Scholar]
  48. Wolinsky E. 1979; Nontuberculous mycobacteria and associated diseases. Am Rev Respir Dis 119:107–159
    [Google Scholar]
  49. Woods G. L., Williams-Bouyer N., Wallace R. J. Jr, Brown-Elliott B. A., Witebsky F. G., Conville P. S., Plaunt M., Hall G., Aralar P., Inderlied C. 2003; Multi-site reproducibility of results obtained by two broth dilution methods for susceptibility testing of Mycobacterium avium complex. J Clin Microbiol 41:627–631 [CrossRef]
    [Google Scholar]
  50. Yaiko D. M., Chin D. P., Gonzalez P. C., Nassos P. S., Hopewell P. C., Reingold A. L., Horsburgh C. R. Jr, Yakrus M. A., Ostroff S. M., Hadley W. K. 1995; Mycobacterium avium complex in water, food, and soil samples collected from the environment of HIV-infected individuals. J Acquir Immune Defic Syndr Hum Retrovirol 9:176–182
    [Google Scholar]
  51. Yoder S., Argueta C., Holtzman A., Aronson T., Berlin O. G. W., Tomasek P., Glover N., Froman S., Stelma G. Jr 1999; PCR comparison of Mycobacterium avium isolates obtained from patients and foods. Appl Environ Microbiol 65:2650–2653
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47075-0
Loading
/content/journal/jmm/10.1099/jmm.0.47075-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error