1887

Abstract

The formation and composition of dental plaque biofilm are important factors which influence the development of gingivitis, caries and periodontitis. Studying dental plaque biofilm in models can cause an oversimplification of the real conditions in the oral cavity. In this study, bovine enamel slabs were fixed in an individual acrylic appliance to quantify dental plaque formation and composition using multiplex fluorescence hybridization (FISH) and confocal laser scanning microscopy. Each of the five oligonucleotide probes used for FISH was specific for either eubacteria or one of four frequently isolated bacterial constituents belonging to early and late colonizers of tooth surfaces. The thickness of formed biofilm increased from 14.9±5.0 μm after 1 day to 49.3±11.6 μm after 7 days. spp. were predominant in 1-day-old dental plaque and decreased significantly after 7 days (=0.0061). Compared to the first day, decreased after 2 days and increased significantly after 7 days (=0.0006). The decreases of content on day 2 and day 7 were significant (=0.0028). Changes in spp. were not significant during the study period (>0.05). The results showed that an observation period of 7 days was required to detect significant changes in spp. and . The multiplex FISH used is suitable for analysing the dynamics of four important bacterial constituents in the oral biofilm in epidemiological studies.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47094-0
2007-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/5/681.html?itemId=/content/journal/jmm/10.1099/jmm.0.47094-0&mimeType=html&fmt=ahah

References

  1. Amann R. I. 1995; In situ identification of microorganisms by whole cell hybridization with rRNA-targeted nucleic acid probes. In Molecular Microbial Ecology Manual 3.3.6 pp 1–15 Edited by Akkermans A. D. L, van Elsas J. D., de Bruijin F. J. Dordrecht, The Netherlands: Kluwer;
    [Google Scholar]
  2. Amann R. I., Binder B. J., Olson R. J., Chisholm S. W., Devereux R., Stahl D. A. 1990; Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925
    [Google Scholar]
  3. Amann R. I., Ludwig W., Schleifer K. H. 1995; Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169
    [Google Scholar]
  4. Amann R. I., Snaidr J., Wagner M., Ludwig W., Schleifer K. H. 1996; In situ visualization of high genetic diversity in a natural microbial community. J Bacteriol 178:3496–3500
    [Google Scholar]
  5. Arweiler N. B., Hellwig E., Sculean A., Hein N., Auschill T. M. 2004; Individual vitality pattern of in situ dental biofilms at different locations in the oral cavity. Caries Res 38:442–447 [CrossRef]
    [Google Scholar]
  6. Bos R., van der Mei H. C., Bussher H. J. 1996; Co-adhesion of oral microbial pairs under flow in the presence of saliva and lactose. J Dent Res 75:809–815 [CrossRef]
    [Google Scholar]
  7. Bradshaw D. J., Marsh P. D., Allison C., Schilling K. M. 1996; Effect of oxygen, inoculum composition and flow rate on development of mixed culture biofilms. Microbiology 142:623–629 [CrossRef]
    [Google Scholar]
  8. Carlen A., Borjesson A. C., Nikdel K., Olsson J. 1998; Composition of pellicles formed in vivo on tooth surfaces in different parts of the dentition, and in vitro on hydroxyapatite. Caries Res 32:447–455 [CrossRef]
    [Google Scholar]
  9. Ciardi J. E., McCray G. F., Kolenbrander P. E., Lau A. 1987; Cell-to cell interaction of Streptococcus sanguis and Propionibacterium acnes on saliva-coated hydroxyapatite. Infect Immun 55:1441–1446
    [Google Scholar]
  10. Foster J. S., Kolenbrander P. E. 2004; Development of a multispecies oral bacterial community in a saliva-conditioned flow cell. Appl Environ Microbiol 70:4340–4348 [CrossRef]
    [Google Scholar]
  11. Foster J. S., Palmer R. J. Jr, Kolenbrander P. E. 2003; Human oral cavity as a model for the study of genome-genome interactions. Biol Bull 204:200–204 [CrossRef]
    [Google Scholar]
  12. Gibbons R. J., Nygaard M. 1970; Interbacterial aggregation of plaque bacteria. Arch Oral Biol 15:1397–1400 [CrossRef]
    [Google Scholar]
  13. Guggenheim M., Shapiro S., Gmür R., Guggenheim B. 2001; Spatial arrangements and associative behavior of species in an in vitro oral biofilm model. Appl Environ Microbiol 67:1343–1350 [CrossRef]
    [Google Scholar]
  14. Kolenbrander P. E., Andersen R. N., Kazmerzak K., Wu R., Palmer R. J. Jr 1999; Spatial organisation of oral bacteria in biofilms. Methods Enzymol 310:322–332
    [Google Scholar]
  15. Kolenbrander P. E., Andersen R. N., Blehrt D. S., England P. G., Foster J. S., Palmer R. J. Jr 2002; Communication among oral bacteria. Microbiol Mol Biol Rev 66:486–505 [CrossRef]
    [Google Scholar]
  16. Kolenbrander P. E., Egland P. G., Diaz P. I., Palmer R. J. Jr 2005; Genome-genome interactions: bacterial communities in initial dental plaque. Trends Microbiol 13:11–15 [CrossRef]
    [Google Scholar]
  17. Kroes I., Lepp P. W., Relman D. A. 1999; Bacterial diversity within the human subgingival crevice. Proc Natl Acad Sci U S A 96:14547–14552 [CrossRef]
    [Google Scholar]
  18. Lendenmann U., Grogan J., Oppenheim F. G. 2000; Saliva and dental pellicle – a review. Adv Dent Res 14:22–28 [CrossRef]
    [Google Scholar]
  19. Liljemark W. F., Bloomquist C. G., Bandt C. L., Pihlstrom B. L., Hinrichs J. E., Wolff L. F. 1993; Comparison of the distribution of Actinomyces in dental plaque on inserted enamal and natural tooth surfaces in periodontal health and disease. Oral Microbiol Immunol 8:5–15 [CrossRef]
    [Google Scholar]
  20. Moore W. E. C., Moore L. V. H. 1994; The bacteria of periodontal diseases. Periodontol 2000; 5:66–77 [CrossRef]
    [Google Scholar]
  21. Moter A., Göbel U. B. 2000; Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods 41:85–112 [CrossRef]
    [Google Scholar]
  22. Nyvad B., Kilian M. 1987; Microbiology of the early colonization of human enamel and root surfaces in vivo. Scand J Dent Res 95:369–380
    [Google Scholar]
  23. Nyvad B., Kilian M. 1990; Comparison of the initial streptococcal microflora on dental enamel in caries-active and in caries-inactive individuals. Caries Res 24:267–272 [CrossRef]
    [Google Scholar]
  24. Oda Y., Slagman S. J., Meijer W. G., Forney L. J., Gottschal J. C. 2000; Influence of growth rate and starvation on fluorescent in situ hybridisation of Rhodopseudomonas palustris . FEMS Microbiol Ecol 32:205–213 [CrossRef]
    [Google Scholar]
  25. Palmer R. J. Jr, Caldwell D. E. 1995; A flowcell for the study of plaque removal and regrowth. J Microbiol Methods 24:171–182 [CrossRef]
    [Google Scholar]
  26. Palmer R. J. Jr, Kazmerzak K., Hansen M. C., Kolenbrander P. E. 2001a; Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source. Infect Immun 69:5794–5804 [CrossRef]
    [Google Scholar]
  27. Palmer R. J. Jr, Wu R., Gordon S., Bloomquist C. G., Liljemark W. F., Kilian M., Kolenbrander P. E. 2001b; Retrieval of biofilms from the oral cavity. Methods Enzymol 337:393–403
    [Google Scholar]
  28. Palmer R. J. Jr, Sharon M., Gordon M. S., Cisar J. O., Kolenbrander P. E. 2003; Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque. J Bacteriol 185:3400–3409 [CrossRef]
    [Google Scholar]
  29. Paster B. J., Bartoszyk I. M., Dewhirst F. E. 1998; Identification of oral streptococci using PCR-based, reverse-capture, checkerboard hybridization. Methods Cell Sci 20:223–231 [CrossRef]
    [Google Scholar]
  30. Paster B. J., Boches S. K., Galvin J. L., Ericson R. E., Lau C. N., Levanos V. A., Sahasrabudhe A., Dewhirst F. E. 2001; Bacterial diversity in human subgingival plaque. J Bacteriol 183:3770–3783 [CrossRef]
    [Google Scholar]
  31. Schmid M., Twachtmann U., Klein M., Strous M., Juretschko S., Jetten M., Metzger J. W., Schleifer K. H., Wagner M. 2000; Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst Appl Microbiol 23:93–106 [CrossRef]
    [Google Scholar]
  32. Socransky S. S., Haffajee A. D., Cugini M. A., Smith C., Kent R. L. Jr 1998; Microbial complexes in subgingival plaque. J Clin Periodontol 25:134–144 [CrossRef]
    [Google Scholar]
  33. Sunde P. T., Olsen I., Göbel U. B., Theegarten D., Winter S., Debelian G. J., Tronstad L., Moter A. 2003; Fluorescence in situ hybridization (FISH) for direct visualization of bacteria in periapical lesions of asymptomatic root-filled teeth. Microbiology 149:1095–1102 [CrossRef]
    [Google Scholar]
  34. Thurnheer T., Gmür R., Giertsen E., Guggenheim B. 2001; Automated fluorescent in situ hybridization for the specific detection and quantification of oral streptococci in dental plaque. J Microbiol Methods 44:39–47 [CrossRef]
    [Google Scholar]
  35. Thurnheer T., Gmür R., Guggenheim B. 2004; Multiplex FISH analysis of a six-species bacterial biofilm. J Microbiol Methods 56:37–47 [CrossRef]
    [Google Scholar]
  36. Wagner M., Assmus B., Hartmann A., Hutzler P., Amann R. 1994; In situ analysis of microbial consortia in activated sludge using fluorescently labelled, rRNA-targeted oligonucleotide probes and confocal laser scanning microscopy. J Microsc 176:181–187 [CrossRef]
    [Google Scholar]
  37. Wecke J., Kersten T., Madela K., Moter A., Gobel U. B., Friedmann A., Bernimoulin J. 2000; A novel technique for monitoring the development of bacterial biofilms in human periodontal pockets. FEMS Microbiol Lett 191:95–101 [CrossRef]
    [Google Scholar]
  38. Wood S. R., Kirkham J., Marsh P. D., Shore R. C., Natress B., Robinson C. 2000; Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy. J Dent Res 79:21–27 [CrossRef]
    [Google Scholar]
  39. Wood S. R., Kirkham J., Shore R. C., Brookes C., Robinson C. 2002; Changes in the structure and density of oral plaque biofilms with increasing plaque age. FEMS Microbiol Ecol 39:239–244 [CrossRef]
    [Google Scholar]
  40. Zhu M., Takenaka S., Sato M., Hoshino E. 2001; Extracellular polysaccharides do not inhibit the reaction between Streptococcus mutans and its specific immunoglobulin G (IgG) or penetration of the IgG through S. mutans biofilm. Oral Microbiol Immunol 16:54–56 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47094-0
Loading
/content/journal/jmm/10.1099/jmm.0.47094-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error