1887

Abstract

Group B (GBS) resistant to erythromycin and clindamycin has been isolated with increasing frequency since the mid-1990s. This work studied GBS isolates from three US cities to determine the genetic basis of the macrolide resistance phenotype. genes were amplified from five isolates collected in Boston, Pittsburgh and Seattle from infant and adult sources. Gene-walking methods were used to determine the chromosomal location of and to identify associated genes. Southern mapping and random amplified polymorphic DNA (RAPD) analyses were used to distinguish the isolates. The gene was present on the chromosome within a composite Tn/Tn-like transposon similar to one identified in . Four strains from Boston and Pittsburgh were serotype V and identical by Southern hybridization and RAPD analysis. The Seattle isolate was serotype Ib, with different patterns on RAPD analysis and Southern mapping. The composite transposon was integrated at an identical chromosomal site in all five isolates. The presence of this composite transposon in both GBS and pneumococci suggests that -mediated macrolide resistance in streptococci may be due to the horizontal transfer of a mobile transposable element, and raises concern for further dissemination of high-grade erythromycin and clindamycin resistance among streptococcal species.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47131-0
2007-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/7/947.html?itemId=/content/journal/jmm/10.1099/jmm.0.47131-0&mimeType=html&fmt=ahah

References

  1. Andrews J. I., Diekema D. J., Hunter S. K., Rhomberg P. R., Pfaller A., Jones R. N., Doern G. V. 2000; Group B streptococci causing neonatal bloodstream infection, antimicrobial susceptibility and serotyping results from SENTRY centers in the Western Hemisphere. Am J Obstet Gynecol 183:859–862 [CrossRef]
    [Google Scholar]
  2. Arpin C., Daube H., Tessier F., Quentin C. 1999; Presence of mefA and mefE genes in Streptococcus agalactiae . Antimicrob Agents Chemother 43:944–946
    [Google Scholar]
  3. Banks D. J., Porcella S. F., Barbian K. D., Martin J. M., Musser J. M. 2003; Structure and distribution of an unusual chimeric genetic element encoding macrolide resistance in phylogenetically diverse clones of group A Streptococcus . J Infect Dis 188:1898–1908 [CrossRef]
    [Google Scholar]
  4. Betriu C., Gomez M., Sanchez A., Cruceyra A., Romero J., Picazo J. J. 1994; Antibiotic resistance and penicillin tolerance in clinical isolates of group B streptococci. Antimicrob Agents Chemother 38:2183–2186 [CrossRef]
    [Google Scholar]
  5. Blumberg H. M., Stephens D. S., Modansky M., Erwin M., Elliot J., Facklam R. R., Schuchat A., Baughman W., Farley M. M. 1996; Invasive group B streptococcal disease, the emergence of serotype V. J Infect Dis 173:365–373 [CrossRef]
    [Google Scholar]
  6. Centers for Disease Control and Prevention (CDC) 1996; Prevention of perinatal group B streptococcal disease, a public health perspective. MMWR Recomm Rep 45:1–24
    [Google Scholar]
  7. Centers for Disease Control and Prevention (CDC) 2002; Prevention of perinatal group B streptococcal disease. Revised guidelines from CDC. MMWR Recomm Rep 51:1–22
    [Google Scholar]
  8. Chaffin D. O., Rubens C. E. 1998; Blue/white screening of recombinant plasmids in Gram-positive bacteria by interruption of alkaline phosphatase gene ( phoZ ) expression. Gene 219:91–99 [CrossRef]
    [Google Scholar]
  9. Chatellier S., Ramanantsoa C., Harriau P., Rolland K., Rosenau A., Quentin R. 1997; Characterization of Streptococcus agalactiae strains by randomly amplified polymorphic DNA analysis. J Clin Microbiol 35:2573–2579
    [Google Scholar]
  10. Chen K. T., Puopolo K. M., Eichenwald E. C., Onderdonk A. B., Lieberman E. 2005; No increase in rates of early-onset neonatal sepsis by antibiotic-resistant group B Streptococcus in the era of intrapartum antibiotic prophylaxis. Am J Obstet Gynecol 192:1167–1171 [CrossRef]
    [Google Scholar]
  11. Croak A., Abate G., Goodrum K., Modrzakowski M. 2003; Predominance of serotype V and frequency of erythromycin resistance in Streptococcus agalactiae in Ohio. Am J Obstet Gynecol 188:1148–1150 [CrossRef]
    [Google Scholar]
  12. Culebras E., Rodriguez-Avial I., Betrie C., Redondo M., Picazo J. J. 2002; Macrolide and tetracycline resistance and molecular relationships of clinical strains of Streptococcus agalactiae . Antimicrob Agents Chemother 46:1574–1576 [CrossRef]
    [Google Scholar]
  13. de Azavedo J. C. S., McGavin M., Duncan C., Low D. E., McGeer A. 2001; Prevalence and mechanisms of macrolide resistance in invasive and noninvasive group B streptococcus isolates from Ontario, Canada. Antimicrob Agents Chemother 45:3504–3508 [CrossRef]
    [Google Scholar]
  14. Diekema D. J., Andrews J. I., Huynh H., Rhomberg P. R., Doktor S. R., Beyer J., Shortridge V. D., Flamm R. K., Jones R. N., Pfaller M. A. 2003; Molecular epidemiology of macrolide resistance in neonatal bloodstream isolates of group B streptococci. J Clin Microbiol 41:2659–2661 [CrossRef]
    [Google Scholar]
  15. Fernandez M., Hickman M. K., Baker C. J. 1998; Antimicrobial susceptibilities of group B streptococci isolated between 1992 and 1996 from patients with bacteremia or meningitis. Antimicrob Agents Chemother 42:1517–1519
    [Google Scholar]
  16. Framson P. E., Nittayajarn A., Merry J., Youngman P., Rubens C. E. 1997; New genetic techniques for group B streptococci, high-efficiency transformation, maintenance of temperature-sensitive pWV01 plasmids, and mutagenesis with Tn917. Appl Environ Microbiol 63:3539–3547
    [Google Scholar]
  17. Giovanetti E., Brenciani A., Vecchi M., Manzin A., Varaldo P. E. 2005; Prophage association of mef (A) elements encoding efflux-mediated erythromycin resistance in Streptococcus pyogenes . J Antimicrob Chemother 55:445–451 [CrossRef]
    [Google Scholar]
  18. Heelan J. S., Hasenbein M. E., McAdam A. J. 2004; Resistance of group B streptococcus to selected antibiotics, including erythromycin and clindamycin. J Clin Microbiol 42:1263–1264 [CrossRef]
    [Google Scholar]
  19. Junop M. S., Haniford D. B. 1997; Factors responsible for target site selection in Tn10 transposition, a role for the DDE motif in target DNA capture. EMBO J 16:2646–2655 [CrossRef]
    [Google Scholar]
  20. Kohli A., Griffiths S., Palacios N., Twyman R. M., Vain P., Laurie D. A., Christou P. 1999; Molecular characterization of transforming plasmid rearrangements in transgenic rice reveals a recombination hotspot in the CaMV 35S promoter and confirms the predominance of microhomology mediated recombination. Plant J 17:591–601 [CrossRef]
    [Google Scholar]
  21. Lavigne J. P., Vergunst A. C., Bourg G., O'Callaghan D. 2005; The IncP island in the genome of Brucella suis 1330 was acquired by site-specific integration. Infect Immun 73:7779–7783 [CrossRef]
    [Google Scholar]
  22. LeBlanc D. J., Lee L. N., Abu-Al-Jaibat A. 1992; Molecular, genetic, and functional analysis of the basic replicon of pVA380-1, a plasmid of oral streptococcal origin. Plasmid 28:130–145 [CrossRef]
    [Google Scholar]
  23. Limansky A. S., Sutich E. G., Guardati M. C., Toresani I. E., Viale A. M. 1998; Genomic diversity among Streptococcus agalactiae isolates detected by a degenerate oligonucleotide-primed amplification assay. J Infect Dis 177:1308–1313 [CrossRef]
    [Google Scholar]
  24. McDougal L. K., Tenover F. C., Lee L. N., Rasheed J. K., Patterson J. E., Jorgensen J. H., LeBlanc D. J. 1998; Detection of Tn917-like sequences within a Tn916-like conjugative transposon (Tn3872) in erythromycin-resistant isolates of Streptococcus pneumoniae . Antimicrob Agents Chemother 42:2312–2318
    [Google Scholar]
  25. Morikawa Y., Kitazato M., Katsukawa C., Tamaru A. 2003; Prevalence of cefotaxime resistance in group B streptococcus isolates from Osaka, Japan. J Infect Chemother 9:131–133 [CrossRef]
    [Google Scholar]
  26. Paoletti L. J., Bradford J., Paoletti L. C. 1999; A serotype VIII strain among colonizing group B streptococcal isolates in Boston, Massachusetts. J Clin Microbiol 37:3759–3760
    [Google Scholar]
  27. Pearlman M. D., Pierson C. L., Faix R. G. 1998; Frequent resistance of clinical group B streptococci isolates to clindamycin and erythromycin. Obstet Gynecol 92:258–261 [CrossRef]
    [Google Scholar]
  28. Poyart C., Quesne G., Acar P., Berche P., Trieu-Cuot P. 2000; Characterization of the Tn916-like transposon Tn3872 in a strain of Abiotrophia defectiva ( Streptococcus defectivus ) causing sequential episodes of endocarditis in a child. Antimicrob Agents Chemother 44:790–793 [CrossRef]
    [Google Scholar]
  29. Puopolo K. M., Madoff L. C., Eichenwald E. C. 2005; Early-onset group B streptococcal disease in the era of maternal screening. Pediatrics 115:1240–1246 [CrossRef]
    [Google Scholar]
  30. Roberts M. C., Sutcliffe J., Courvalin P., Jensen L. B., Rood J., Seppala H. 1999; Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrob Agents Chemother 43:2823–2830
    [Google Scholar]
  31. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Scott J. R., Bringel F., Marra D., Van Alstine G., Rudy C. K. 1994; Conjugative transposition of Tn916: preferred targets and evidence for conjugative transfer of a single strand and for a double-stranded circular intermediate. Mol Microbiol 11:1099–1108 [CrossRef]
    [Google Scholar]
  33. Seppala H., He Q., Osterblad M., Huovinen P. 1994; Typing of group A streptococci by random amplified polymorphic DNA analysis. J Clin Microbiol 32:1945–1948
    [Google Scholar]
  34. Snoek M., Teushcer C., van Vugt H. 1998; Molecular analysis of the major MHC recombinational hot spot located within the G7c gene of the murine class III region that is involved in disease susceptibility. J Immunol 160:266–272
    [Google Scholar]
  35. Takeuchi K., Tomita H., Fujimoto S., Kudo M., Kuwano H., Ike Y. 2005; Drug resistance of Enterococcus faecium clinical isolates and the conjugative transfer of gentamicin and erythromycin resistance traits. FEMS Microbiol Lett 243:347–354 [CrossRef]
    [Google Scholar]
  36. Tettelin H., Masignani V., Cieslewicz M. J., Eisen J. A., Peterson S., Wessels M. R., Paulsen I. T., Nelson K. E., Margarit I. other authors 2002; Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae . Proc Natl Acad Sci U S A 99:12391–12396 [CrossRef]
    [Google Scholar]
  37. Tettelin H., Masignani V., Cieslewicz M. J., Donati C., Medini D., Ward N. L., Angiuoli S. V., Crabtree J., Jones A. L. other authors 2005; Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae : implications for the microbial ‘pan-genome’. Proc Natl Acad Sci U S A 102:13950–13955 [CrossRef]
    [Google Scholar]
  38. Tomich P. K., An F. Y., Clewell D. B. 1980; Properties of erythromycin-inducible transposon Tn917 in Streptococcus faecalis . J Bacteriol 141:1366–1374
    [Google Scholar]
  39. Weiser J. N., Rubens C. E. 1987; Transposon mutagenesis of group B streptococcus β -hemolysin biosynthesis. Infect Immun 55:2314–2316
    [Google Scholar]
  40. Whittle G., Salyers A. A. 2002; Bacterial transposons, an increasingly diverse group of elements. In Modern Microbial Genetics , 2nd edn. pp 385–427 Edited by Streips U. N, Yasbin R. E. New York: Wiley-Liss;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47131-0
Loading
/content/journal/jmm/10.1099/jmm.0.47131-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error