1887

Abstract

The zoophilic dermatophyte species belongs to the complex and is known to mate with tester strains of that teleomorph species, at least in the laboratory. Human infections are likely to be acquired from the fur of cats, dogs and horses. Epidemiological studies to reveal sources and routes of infection have been hampered by a lack of polymorphic molecular markers. Human cases mainly concern moderately inflammatory tinea corporis and tinea capitis, but, as cases of highly inflammatory ringworm are also observed, the question arises as to whether all lineages of are equally virulent to humans. In this study, two microsatellite markers were developed and used to analyse a global set of 101 strains to reveal patterns of genetic variation and dispersal. Using a Bayesian and a distance approach for structuring the samples, three populations could be distinguished, with evidence of recombination in one of them (III). This population contained 44 % of the animal isolates and only 9 % of the human strains. Population I, with strictly clonal reproduction (comprising a single multilocus genotype), contained 74 % of the global collection of strains from humans, but only 23 % of the animal strains. From these findings, it was concluded that population differentiation in is not allopatric, but rather is due to the emergence of a (virulent) genotype that has a high potential to infect the human host. Adaptation of genotypes resulting in a particular clinical manifestation was not evident. Furthermore, isolates from horses did not show a monophyletic clustering.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47136-0
2007-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/56/10/1377.html?itemId=/content/journal/jmm/10.1099/jmm.0.47136-0&mimeType=html&fmt=ahah

References

  1. Agapow P. M., Burt A. 2001; Indices of multilocus linkage disequilibrium. Mol Ecol Notes 1:101–102 [CrossRef]
    [Google Scholar]
  2. Brilhante R. S., Cordeiro R. A., Medrano D. J., Monteiro A. J., Sidrim J. J., Rocha M. F. 2005; Antifungal susceptibility and genotypical pattern of Microsporum canis strains. Can J Microbiol 51:507–510 [CrossRef]
    [Google Scholar]
  3. Cano J., Rezusta A., Sole M. J., Gil M., Rubio C., Revillo M. J., Guarro J. 2005; Inter-single-sequence-repeat-PCR typing as a new tool for identification of Microsporum canis strains. J Dermatol Sci 39:17–21 [CrossRef]
    [Google Scholar]
  4. Carter D. A., Taylor J. W., Dechairo B., Burt A., Koenig G. L., White T. J. 2001; Amplified single-nucleotide polymorphisms and a (GA) n microsatellite marker reveal genetic differentiation between populations of Histoplasma capsulatum from the Americas. Fungal Genet Biol 34:37–48 [CrossRef]
    [Google Scholar]
  5. Cavalli-Sforza L. L., Edwards A. W. F. 1967; Phylogenetic analysis: models and estimation procedures. Evolution 32:550–570
    [Google Scholar]
  6. Delacroix F., Bodin E. 1896; Les teignes tondantes du cheval et leurs inoculations humaines. Thése Paris 235:41
    [Google Scholar]
  7. Dettman J. R., Taylor J. W. 2004; Mutation and evolution of microsatellite loci in Neurospora . Genetics 168:1231–1248 [CrossRef]
    [Google Scholar]
  8. Ernst T. M. 1980; Kerion-like tinea barbae caused by Microsporum canis . Mykosen 23:35–37
    [Google Scholar]
  9. Faggi E., Pini G., Campisi E., Bertellini C., Difonzo E., Mancianti F. 2001; Application of PCR to distinguish common species of dermatophytes. J Clin Microbiol 39:3382–3385 [CrossRef]
    [Google Scholar]
  10. Fisher M. C., Koenig G. L., White T. J., Taylor J. W. 2000; Pathogenic clones versus environmentally driven population increase: analysis of an epidemic of the human fungal pathogen Coccidioides immitis . J Clin Microbiol 38:807–813
    [Google Scholar]
  11. Fisher M. C., Aanensen D., de Hoog S., Vanittanakom N. 2004; Multilocus microsatellite typing system for Penicillium marneffei reveals spatially structured populations. J Clin Microbiol 42:5065–5069 [CrossRef]
    [Google Scholar]
  12. Giddey K., Favre B., Quadroni M., Monod M. 2007; Closely related dermatophyte species produce different patterns of secreted proteins. FEMS Microbiol Lett 267:95–101 [CrossRef]
    [Google Scholar]
  13. Gräser Y., El Fari M., Vilgalys R., Kuijpers A. F. A., de Hoog G. S., Presber W., Tietz H. J. 1999; Phylogeny and taxonomy of the family Arthrodermataceae (dermatophytes) using sequence analysis of the ribosomal ITS region. Med Mycol 37:105–114 [CrossRef]
    [Google Scholar]
  14. Hasegawa A., Usui K. 1975; Nannizzia otae sp. nov., the perfect state of Microsporum canis Bodin. Jpn J Med Mycol 16:148–152 [CrossRef]
    [Google Scholar]
  15. Hironaga M., Nozaki K., Watanabe S. 1980; Ascocarp production by Nannizzia otae on keratinous and non-keratinous agar media and mating behaviour of N. otae and 123 Japanese isolates of Microsporum canis . Mycopathologia 72:135–141 [CrossRef]
    [Google Scholar]
  16. Kardjeva V., Summerbell R., Kantardjiev T., Devliotou-Panagiotidou D., Sotiriou E., Gräser Y. 2006; Forty-eight-hour diagnosis of onychomycosis with subtyping of Trichophyton rubrum strains. J Clin Microbiol 44:1419–1427 [CrossRef]
    [Google Scholar]
  17. Kasuga T., White T., Koenig J., McEwen G. J., Restrepo A., Castaneda E., Da Silva Lacaz C., Heins-Vaccari E. M., De Freitas R. S. other authors 2003; Phylogeography of the fungal pathogen Histoplasma capsulatum . Mol Ecol 12:3383–3401 [CrossRef]
    [Google Scholar]
  18. Kaszubiak A., Klein S., de Hoog G. S., Gräser Y. 2004; Population structure and evolutionary origins of Microsporum canis , M. ferrugineum and M. audouinii . Infect Genet Evol 4:179–186 [CrossRef]
    [Google Scholar]
  19. Monod M., Capoccia S., Lechenne B., Zaugg C., Holdom M., Jousson O. 2002; Secreted proteases from pathogenic fungi. Int J Med Microbiol 292:405–419 [CrossRef]
    [Google Scholar]
  20. Ohst T., de Hoog S., Presber W., Stavrakieva V., Gräser Y. 2004; Origins of microsatellite diversity in the Trichophyton rubrum T. violaceum clade (dermatophytes. J Clin Microbiol 42:4444–4448 [CrossRef]
    [Google Scholar]
  21. Pritchard J. K., Stephens M., Donnelly P. 2000; Inference of population structure using multilocus genotype data. Genetics 155:945–959
    [Google Scholar]
  22. Pryce D. W., Verbov J. L. 1992; Inflammatory ringworm with unusual features. Clin Exp Dermatol 17:186–188 [CrossRef]
    [Google Scholar]
  23. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  24. Stephens C. J., Hay R. J., Black M. M. 1989; Fungal kerion – total scalp involvement due to Microsporum canis infection. Clin Exp Dermatol 14:442–444 [CrossRef]
    [Google Scholar]
  25. Taylor J. W., Jacobson D. J., Fisher M. C. 1999; The evolution of asexual fungi: reproduction, speciation and classification. Annu Rev Phytopathol 37:197–246 [CrossRef]
    [Google Scholar]
  26. Terragni L., Marelli M. A., Oriani A., Cecca E. 1993; Tinea corporis bullosa. Mycoses 36:135–137
    [Google Scholar]
  27. Weir B. S. 1996 Genetic data analysis II Sunderland, MA: Sinauer;
    [Google Scholar]
  28. Weitzman I., Padhye A. A. 1978; Mating behaviour of Nannizia otae (= Microsporum canis . Mycopathologia 64:17–22 [CrossRef]
    [Google Scholar]
  29. Yu J., Wan Z., Chen W., Wang W., Li R. 2004; Molecular typing study of the Microsporum canis strains isolated from an outbreak of tinea capitis in a school. Mycopathologia 157:37–41 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47136-0
Loading
/content/journal/jmm/10.1099/jmm.0.47136-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error