1887

Abstract

A pathogenic vancomycin-resistant (VRSA) isolate (MIC ≥64 μg ml) was obtained from a Kolkata hospital in June 2005. Species identification was confirmed by Gram staining, standard biochemical tests and PCR amplification of the gene, which encodes the thermostable nuclease that is highly specific for . The VRSA isolate was also resistant to beta-lactams (amoxicillin, ampicillin, cefepime, cefotaxime, cefuroxime, cephalexin and meticillin), chloramphenicol, streptomycin, macrolides (erythromycin and roxithromycin), clindamycin, rifampicin and trimethoprim-sulfamethoxazole. However, the isolate was susceptible to gentamicin (an aminoglycoside) and ciprofloxacin (a fluoroquinolone). The resistance to vancomycin was inducible , because the MIC of vancomycin increased from 64 μg ml initially to 1024 μg ml during culture of this VRSA strain in the presence of vancomycin. The VRSA isolate contained a large plasmid (∼53.4 kb) and four small plasmids of ∼6, 5.5, 5.1 and 1.5 kb. The large plasmid of ∼53.4 kb harboured the vancomycin-resistance genes , which was confirmed by PCR amplification using the same plasmid as template and, separately, primers specific for the 2.61 kb gene cluster, (969 bp), (1032 bp) and (609 bp). The VRSA isolate was also positive for . Vancomycin resistance was successfully transferred from this VRSA donor to a vancomycin-sensitive recipient clinical isolate by a broth mating procedure. The MIC of vancomycin for the transconjugant was 32 μg ml, as against 2 μg ml for the parent strain. Nucleotide sequencing of the PCR product showed partial homology with genes of an enterococcal transposon Tn-like element. This is believed to be the first Indian isolate that has been shown to be phenotypically vancomycin-resistant, presumably due to a analogue.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47144-0
2008-01-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/1/72.html?itemId=/content/journal/jmm/10.1099/jmm.0.47144-0&mimeType=html&fmt=ahah

References

  1. Acar J. F. 1980; The disc susceptibility test. In Antibiotics in Laboratory Medicine pp 24–25 Edited by Lorian V. Baltimore: Williams & Wilkins;
    [Google Scholar]
  2. Arthur M., Molinas C., Depardieu F., Courvalin P. 1993; Characterization of Tn 1546 , a Tn 3 -related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J Bacteriol 175:117–127
    [Google Scholar]
  3. Bannerman T. L. 2003; Staphylococcus, Micrococcus , other catalase-positive cocci that grow aerobically. In Manual of Clinical Microbiology pp 384–404 Edited by Murray P. R., Baron E. J., Jorgensen J. H., Pfaller M. A., Yolken R. H. Washington, DC: ASM Press;
    [Google Scholar]
  4. Bauer A. W., Kirby W. M., Sherris J. C., Turck M. 1966; Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496
    [Google Scholar]
  5. Brakstad O. G., Aasbakk K., Maeland J. A. 1992; Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J Clin Microbiol 30:1654–1660
    [Google Scholar]
  6. Bugg T. D. H., Wright G. D., Dutka-Malen S., Arthur M., Courvalin P., Walsh C. T. 1991a; Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry 30:10408–10415 [CrossRef]
    [Google Scholar]
  7. Bugg T. D. H., Dutka-Malen S., Arthur M., Courvalin P., Walsh C. T. 1991b; Identification of vancomycin resistance protein VanA as a d-alanine : d-alanine ligase of altered substrate specificity. Biochemistry 30:2017–2021 [CrossRef]
    [Google Scholar]
  8. CDC 1997; Reduced susceptibility of Staphylococcus aureus to vancomycin –. Japan: 1996 MMWR Morb Mortal Wkly Rep 46:624–626
    [Google Scholar]
  9. CDC 2004; Brief report: vancomycin-resistant Staphylococcus aureus –. New York: 2004 MMWR Morb Mortal Wkly Rep 53:322–323
    [Google Scholar]
  10. Chambers H. F. 2001; The changing epidemiology of Staphylococcus aureus ?. Emerg Infect Dis 7:178–182 [CrossRef]
    [Google Scholar]
  11. Chang S., Sievert D. M., Hageman J. C., Boulton M. L., Tenover F. C., Downes F. P., Shah S., Rudrik J. T., Pupp G. R. other authors 2003; Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med 348:1342–1347 [CrossRef]
    [Google Scholar]
  12. Clark N. C., Weigel L. M., Patel J. B., Tenover F. C. 2005; Comparison of Tn 1546 -like elements in vancomycin-resistant Staphylococcus aureus isolates from Michigan and Pennsylvania. Antimicrob Agents Chemother 49:470–472 [CrossRef]
    [Google Scholar]
  13. Clewell D. B., An F. Y., White B. A., Gawron-Burke C. 1985; Streptococcus faecalis sex pheromone (cAM373) also produced by Staphylococcus aureus and identification of a conjugative transposon (Tn 918 ). J Bacteriol 162:1212–1220
    [Google Scholar]
  14. Dias C. G., Rosa Ropke V. R., Superti S., Berquo L., Azevedo P. 2004; Use of a novel selective medium to detect methicillin-resistant Staphylococcus aureus in colonized patients of an intensive care unit. Infect Contro Hosp Epidemic 25:130–132 [CrossRef]
    [Google Scholar]
  15. Dickgiesser N., Kreiswirth B. N. 1986; Determination of aminoglycoside resistance in Staphylococcus aureus by DNA hybridization. Antimicrob Agents Chemother 29:930–932 [CrossRef]
    [Google Scholar]
  16. Donabedian S., Hershberger E., Thal L. A., Chow J. W., Clewell D. B., Dunn B. R., Zervos M. J. 2000; PCR fragment length polymorphism analysis of vancomycin-resistant Enterococcus faecium . J Clin Microbiol 38:2885–2888
    [Google Scholar]
  17. Garnier F., Taourit S., Glaser P., Courvalin P., Galimand M. 2000; Characterization of transposon Tn 1549 , conferring VanB-type resistance in Enterococcus spp. Microbiology 146:1481–1489
    [Google Scholar]
  18. Kim M. N., Pai C. H., Woo J. H., Ryu J. S., Hiramatsu K. 2000; Vancomycin-intermediate Staphylococcus aureus in Korea. J Clin Microbiol 38:3879–3881
    [Google Scholar]
  19. Levin T. P., Suh B., Axelrod P., Truant A. L., Fekete T. 2005; Potential clindamycin resistance in clindamycin-susceptible, erythromycin-resistant Staphylococcus aureus : report of a clinical failure. Antimicrob Agents Chemother 49:1222–1224 [CrossRef]
    [Google Scholar]
  20. Macrina F. L., Kopecko D. J., Jones K. R., Ayers D. J., Mc Cowen S. M. 1978; A multiple plasmid-containing Escherichia coli strain: convenient source of size reference plasmid molecules. Plasmid 1:417–420 [CrossRef]
    [Google Scholar]
  21. Młynarczyk A., Młynarczyk G., Łuczak M. 2002; Conjugative transfer of glycopeptide and macrolide resistant genes among enterococci and from Enterococcus faecalis to Staphylococcus aureus . Med Dosw Mikrobiol 54:21–28 (in Polish
    [Google Scholar]
  22. Morse S. I. 1980; Staphylococci. In Microbiology Including Immunology and Molecular Genetics, 3rd edn. pp 623–633 Edited by Davis B. D., Dulbecco R., Eisen H. N., Ginsberg H. S. Philadelphia, PA: Harper & Row Publishers;
    [Google Scholar]
  23. Munckhof W. J., Harper J., Schooneveldt J., Nimmo G. R. 2002; Recent appearance of clindamycin resistance in community-acquired methicillin-resistant Staphylococcus aureus (MRSA) in south-east Queensland. Med J Aust 176:243–244
    [Google Scholar]
  24. NCCLS 2000 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically , 5th edn. 17, no. 2 Approved standard M7-A5 Wayne, PA: NCCLS;
    [Google Scholar]
  25. Noble W. C., Virani Z., Cree R. G. 1992; Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus . FEMS Microbiol Lett 72:195–198
    [Google Scholar]
  26. Pawa A., Noble W. C., Howell S. A. 2000; Co-transfer of plasmids in association with conjugative transfer of mupirocin or mupirocin and penicillin resistance in methicillin-resistant Staphylococcus aureus . J Med Microbiol 49:1103–1107
    [Google Scholar]
  27. Perichon B., Courvalin P. 2006; Synergism between beta-lactams and glycopeptides against vanA -type methicillin-resistant Staphylococcus aureus and heterologous expression of the vanA operon. Antimicrob Agents Chemother 50:3622–3630 [CrossRef]
    [Google Scholar]
  28. Philippon A. M., Paul G. C., Jacoby G. A. 1983; Properties of PSE-2 beta-lactamase and genetic basis for its production in Pseudomonas aeroginosa . Antimicrob Agents Chemother 24:362–369 [CrossRef]
    [Google Scholar]
  29. Reynolds P. E., Depardieu F., Dutka-Malen S., Arthur M., Courvalin P. 1994; Glycopeptide resistance mediated by enterococcal transposon Tn 1546 requires production of vanX for hydrolysis of d-alanyl-d-alanine. Mol Microbiol 13:1065–1070 [CrossRef]
    [Google Scholar]
  30. Saha B., Saha D., Niyogi S., Bal M. 1989; A new method of plasmid DNA preparation by sucrose-mediated detergent lysis from Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). Anal Biochem 176:344–349 [CrossRef]
    [Google Scholar]
  31. Schmitz F.-J., Sadurski R., Kray A., Boos M., Geisel R., Kohrer K., Verhoef J., Fluit A. C. 2000; Prevalence of macrolide-resistance genes in Staphylococcus aureus and Enterococcus faecium isolates from 24 European university hospitals. J Antimicrob Chemother 45:891–894 [CrossRef]
    [Google Scholar]
  32. Severin A., Tabei K., Tenover F., Chung M., Clarke N. 2004; High level oxacillin and vancomycin resistance and altered cell wall composition in Staphylococcus aureus carrying the staphylococcal mecA and enterococcal vanA gene complex. J Biol Chem 279:3398–3407
    [Google Scholar]
  33. Tenover F. C., Weigel L. M., Appelbaum P. C., McDougal L. K., Chaitram J., McAllister S., Clark N., Killgore G., O'Hara C. M. other authors 2004; Vancomycin-resistant Staphylococcus aureus isolate from a patient in Pennsylvania. Antimicrob Agents Chemother 48:275–280 [CrossRef]
    [Google Scholar]
  34. Tiwari H. K., Sen M. R. 2006; Emergence of vancomycin resistant Staphylococcus aureus (VRSA) from a tertiary care hospital from northern part of India. BMC Infect Dis 6:156 [CrossRef]
    [Google Scholar]
  35. Turk D. C., Porter I. A. 1978 A Short Textbook of Medical Microbiology , 4th edn. London: Hodder and Stoughton;
    [Google Scholar]
  36. Weigel L. M., Donlan R. M., Shin D. H., Jensen B., Clark N. C., McDougal L. K., Zhu W., Musser K. A., Thompson J. other authors 2007; High-level vancomycin-resistant Staphylococcus aureus isolates associated with a polymicrobial biofilm. Antimicrob Agents Chemother 51:231–238 [CrossRef]
    [Google Scholar]
  37. Woo P. C. Y., Ng K. H. L., Lau S. K. P., Yip K.-T., Fung A. M. Y., Leung K.-W., Tam D. M. W., Que T.-L., Yuen K.-Y. 2003; Usefulness of the microSeq 500 16S ribosomal DNA-based bacterial identification system for identification of clinically significant bacterial isolates with ambiguous biochemical profiles. J Clin Microbiol 41:1996–2001 [CrossRef]
    [Google Scholar]
  38. Wright G. D., Holman T. R., Walsh C. T. 1993; Purification and characterization of VanR and the cytosolic domain of VanS: a two-component regulatory system required for vancomycin resistance in Enterococcus faecium BM4147. Biochemistry 32:5057–5063 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47144-0
Loading
/content/journal/jmm/10.1099/jmm.0.47144-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error