1887

Abstract

In the present study, polyphasic analysis [cultivation, combined with the fingerprinting of individual isolates, and denaturing gradient gel electrophoresis (DGGE)] was applied to study whether similar features concerning the diversity and temporal stability of selected bacterial groups could be detected intra-individually in two different niches – the oral cavity and the colon – from ten adult volunteers consuming probiotics. The predominant bacterial microbiota, group and bifidobacterial populations, were generally stable in salivary and faecal samples, with the greater diversity seen in faeces. Furthermore, different species predominated at the two different sites. group DGGE profiles were unstable, yet the intra-individual profiles from faecal and salivary samples collected at the same time resembled each other. The ingested probiotic product did not affect the stability of the bacterial groups studied. The culture-based analysis showed that most subjects harboured identical indigenous genotypes in saliva and faeces (, , and group). Thus, identical indigenous lactobacilli were able to inhabit both ends of the orogastrointestinal tract, whereas the composition of the other bacterial groups studied varied between the two sites.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47352-0
2008-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/12/1560.html?itemId=/content/journal/jmm/10.1099/jmm.0.47352-0&mimeType=html&fmt=ahah

References

  1. Aas J. A., Paster B. J., Stokes L. N., Olsen I., Dewhirst F. E. 2005; Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721–5732 [CrossRef]
    [Google Scholar]
  2. Alander M., Mättö J., Kneifel W., Johansson M., Kögler B., Crittenden R., Mattila-Sandholm T., Saarela M. 2001; Effect of galacto-oligosaccharide supplementation on human faecal microflora and on survival and persistence of Bifidobacterium lactis Bb-12 in the gastrointestinal tract. Int Dairy J 11:817–825 [CrossRef]
    [Google Scholar]
  3. Atlas R. M. 1997; Cary–Blair transport medium. In Handbook of Microbiological Media p– 253 Edited by Parks L. C. Boca Raton, FL: CRC Press;
    [Google Scholar]
  4. Beerens H. 1991; Detection of bifidobacteria by using propionic acid as a selective agent. Appl Environ Microbiol 57:2418–2419
    [Google Scholar]
  5. Berg R. D. 1996; The indigenous gastrointestinal microflora. Trends Microbiol 4:430–435 [CrossRef]
    [Google Scholar]
  6. Collins M. D., Lawson P. A., Willems A., Cordoba J. J., Fernandez-Garayzabal J., Garcia P., Cai J., Hippe H., Farrow J. A. E. 1994; The phylogeny of the genus Clostridium : proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:812–826 [CrossRef]
    [Google Scholar]
  7. Dal Bello F., Hertel C. 2006; Oral cavity as natural reservoir for intestinal lactobacilli. Syst Appl Microbiol 29:69–76 [CrossRef]
    [Google Scholar]
  8. Downes J., Munson M. A., Spratt D. A., Kononen E., Tarkka E., Jousimies-Somer H., Wade W. G. 2001; Characterisation of Eubacterium -like strains from oral infections. J Med Microbiol 50:947–951
    [Google Scholar]
  9. Eckburg P. B., Bik E. M., Bernstein C. N., Purdom E., Dethlefsen L., Sargent M., Gill S. R., Nelson K. E., Relman D. A. 2005; Diversity of the human intestinal microbial flora. Science 308:1635–1638 [CrossRef]
    [Google Scholar]
  10. Franks A. H., Harmsen H. J. M., Raangs G. C., Jansen G. J., Schut F., Welling G. W. 1998; Variations in bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64:3336–3345
    [Google Scholar]
  11. Li Y., Ku C. Y. S., Xu J., Saxena D., Caufield P. W. 2005; Survey of oral microbial diversity using PCR-based denaturing gradient gel electrophoresis. J Dent Res 84:559–564 [CrossRef]
    [Google Scholar]
  12. Matsuki T., Watanabe K., Tanaka R., Fukuda M., Oyaizu H. 1999; Distribution of bifidobacterial species in human intestinal microflora examined with 16S rRNA-gene-targeted species-specific primers. Appl Environ Microbiol 65:4506–4512
    [Google Scholar]
  13. Matsuki T., Watanabe K., Fujimoto J., Miyamoto Y., Takada T., Matsumoto K., Oyaizu H., Tanaka R. 2002; Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Appl Environ Microbiol 68:5445–5451 [CrossRef]
    [Google Scholar]
  14. Mättö J., Malinen E., Suihko M.-L., Alander M., Palva A., Saarela M. 2004; Genetic heterogeneity and functional properties of intestinal bifidobacteria. J Appl Microbiol 97:459–470 [CrossRef]
    [Google Scholar]
  15. Mättö J., Maunuksela L., Kajander K., Palva A., Korpela R., Kassinen A., Saarela M. 2005; Composition and temporal stability of gastrointestinal microbiota in irritable bowel syndrome – a longitudinal study in IBS and control subjects. FEMS Immunol Med Microbiol 43:213–222 [CrossRef]
    [Google Scholar]
  16. Maukonen J., Satokari R., Mättö J., Söderlund H., Mattila-Sandholm T., Saarela M. 2006a; Prevalence and temporal stability of selected clostridial groups in irritable bowel syndrome in relation to predominant fecal bacteria. J Med Microbiol 55:625–633 [CrossRef]
    [Google Scholar]
  17. Maukonen J., Mättö J., Satokari R., Söderlund H., Mattila-Sandholm T., Saarela M. 2006b; PCR-DGGE and RT-PCR-DGGE show diversity and short-term temporal stability in Clostridium coccoides Eubacterium rectale group in human intestinal microbiota. FEMS Microbiol Ecol 58:517–528 [CrossRef]
    [Google Scholar]
  18. Nisengard R. J., Newman M. G. 1994 Oral Microbiology and Immunology Philadelphia, PA: W.B. Saunders;
    [Google Scholar]
  19. Nübel U., Engelen B., Felske A., Snaidr J., Wieshuber A., Amann R. I., Ludwig W., Backhaus H. 1996; Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643
    [Google Scholar]
  20. Paster B. J., Boches S. K., Galvin J. L., Ericson R. E., Lau C. N., Levanos V. A., Sahasrabudhe A., Dewhirst F. E. 2001; Bacterial diversity in human subgingival plaque. J Bacteriol 183:3770–3783 [CrossRef]
    [Google Scholar]
  21. Rams T. E., Feik D., Slots J. 1990; Staphylococci in human periodontal diseases. Oral Microbiol Immunol 5:29–32 [CrossRef]
    [Google Scholar]
  22. Rasiah I. A., Wong L., Anderson S. A., Sissons C. H. 2005; Variation in bacterial DGGE patterns from human saliva: over time, between individuals and in corresponding dental plaque microcosm. Arch Oral Biol 50:779–787 [CrossRef]
    [Google Scholar]
  23. Sanyal B., Russel C. 1978; Nonsporing, Gram-positive rods in saliva and the gingival crevice of humans. Appl Environ Microbiol 35:670–678
    [Google Scholar]
  24. Satokari R. M., Vaughan E. E., Akkermans A. D., Saarela M., de Vos W. M. 2001a; Bifidobacterial diversity in human feces detected by genus-specific polymerase chain reaction and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67:504–513 [CrossRef]
    [Google Scholar]
  25. Satokari R. M., Vaughan E. E., Akkermans A. D. L., Saarela M., de Vos W. M. 2001b; Polymerase chain reaction and denaturing gradient gel electrophoresis monitoring of fecal Bifidobacterium populations in a prebiotic and probiotic feeding trial. Syst Appl Microbiol 24:227–231 [CrossRef]
    [Google Scholar]
  26. Sghir A., Gramet G., Suau A., Rochet V., Pochart P., Doré J. 2000; Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl Environ Microbiol 66:2263–2266 [CrossRef]
    [Google Scholar]
  27. Suau A., Bonnet R., Sutren M., Godon J. J., Gibson G., Collins M. D., Doré J. 1999; Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807
    [Google Scholar]
  28. Tannock G. W., Munro K., Harmsen H. J. M., Welling G. W., Smart J., Gopal P. K. 2000; Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl Environ Microbiol 66:2578–2588 [CrossRef]
    [Google Scholar]
  29. Thiel R., Blaut M. 2005; An improved method for the automated enumeration of fluorescently labelled bacteria in human faeces. J Microbiol Methods 61:369–379 [CrossRef]
    [Google Scholar]
  30. Vanhoutte T., Huys G., de Brandt E., Swings J. 2004; Temporal stability analysis of the microbiota in human feces by denaturing gradient gel electrophoresis using universal and group-specific 16S rRNA gene primers. FEMS Microbiol Ecol 48:437–446 [CrossRef]
    [Google Scholar]
  31. Walter J., Hertel C., Tannock G. W., Lis C. M., Munro K., Hammes W. 2001; Detection of Lactobacillus , Pediococcus , Leuconostoc , and Weissella species in human feces by using group-specific PCR primers and denaturating gradient gel electrophoresis. Appl Environ Microbiol 67:2578–2585 [CrossRef]
    [Google Scholar]
  32. Wilmotte A., van der Auwera G., de Wachter R. 1993; Structure of the 16S ribosomal RNA of the thermophilic cyanobacterium Chlorogloeopsis HTF (‘ Mastigocladus laminosus HTF’) strain PCC7518, and phylogenetic analysis. FEBS Lett 317:96–100 [CrossRef]
    [Google Scholar]
  33. Zoetendal E. G., Akkermans A. D., de Vos W. M. 1998; Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64:3854–3859
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47352-0
Loading
/content/journal/jmm/10.1099/jmm.0.47352-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error