A quadruplex real-time PCR assay for the detection of Yersinia pestis and its plasmids Stewart, Alvin and Satterfield, Benjamin and Cohen, Marissa and O'Neill, Kim and Robison, Richard,, 57, 324-331 (2008), doi = https://doi.org/10.1099/jmm.0.47485-0, publicationName = Microbiology Society, issn = 0022-2615, abstract= Yersinia pestis, the aetiological agent of the plague, causes sporadic disease in endemic areas of the world and is classified as a National Institute of Allergy and Infectious Diseases Category A Priority Pathogen because of its potential to be used as a bioweapon. Health departments, hospitals and government agencies need the ability to rapidly identify and characterize cultured isolates of this bacterium. Assays have been developed to perform this function; however, they are limited in their ability to distinguish Y. pestis from Yersinia pseudotuberculosis. This report describes the creation of a real-time PCR assay using Taqman probes that exclusively identifies Y. pestis using a unique target sequence of the yihN gene on the chromosome. As with other Y. pestis PCR assays, three major genes located on each of the three virulence plasmids were included: lcrV on pCD1, caf1 on pMT1 and pla on pPCP1. The quadruplex assay was validated on a collection of 192 Y. pestis isolates and 52 near-neighbour isolates. It was discovered that only 72 % of natural plague isolates from the states of New Mexico and Utah harboured all three virulence plasmids. This quadruplex assay proved to be 100 % successful in differentiating Y. pestis from all near neighbours tested and was able to reveal which of the three virulence plasmids a particular isolate possessed., language=, type=