1887

Abstract

A number of nucleic acid amplification assays (NAAs) have been employed to detect tubercle bacilli in clinical specimens for tuberculosis (TB) diagnosis. Among these, loop-mediated isothermal amplification (LAMP) is an NAA possessing superior isothermal reaction characteristics. In the present study, a set of six specific primers targeting the 16S rRNA gene with high sensitivity was selected and a LAMP system (MTB-LAMP) was developed. Using this system, a total of 200 sputum samples from Nepalese patients were investigated. The sensitivity of MTB-LAMP in culture-positive samples was 100 % (96/96), and the specificity in culture-negative samples was 94.2 % (98/104, 95 % confidence interval 90.5–97.9 %). The positive and negative predictive values of MTB-LAMP were 94.1 and 100 %, respectively. These results indicate that this MTB-LAMP method may prove to be a powerful tool for the early diagnosis of TB.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47499-0
2008-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/4/439.html?itemId=/content/journal/jmm/10.1099/jmm.0.47499-0&mimeType=html&fmt=ahah

References

  1. Boehme C. C., Nabeta P., Henostroza G., Raqib R., Rahim Z., Gerhardt M., Sanga E., Hoelscher M., Notomi T. other authors 2007; Operational feasibility of using loop-mediated isothermal amplification for diagnosis of pulmonary tuberculosis in microscopy centers of developing countries. J Clin Microbiol 45:1936–1940 [CrossRef]
    [Google Scholar]
  2. Centers for Disease Control and Prevention; 1992; National action plan to combat multidrug-resistant tuberculosis: summary of a conference; management of persons exposed to multidrug-resistant tuberculosis. Morbid Mortal Weekly Rep 41:5–48
    [Google Scholar]
  3. Iwamoto T., Sonobe T., Hayashi K. 2003; Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M. avium , and M. intracellulare . J Clin Microbiol 41:2616–2622 [CrossRef]
    [Google Scholar]
  4. Jonas V., Alden M. J., Curry J. I., Kamisango K., Knott C. A., Lankford R., Wolfe J. M., Moore D. F. 1993; Detection and identification of Mycobacterium tuberculosis directly from sputum sediments by amplification of rRNA. J Clin Microbiol 31:2410–2416
    [Google Scholar]
  5. Kent B. D., Kubica G. P. 1985 Public Health Mycobacteriology: a Guide for the Level III Laboratory Atlanta: US Department of Health and Human Services, Centers for Disease Control;
    [Google Scholar]
  6. Kimura H., Ihira M., Enomoto Y., Kawada J., Ito J., Morishima T., Yoshikawa T., Asano Y. 2005; Rapid detection of herpes simplex virus DNA in cerebrospinal fluid: comparison between loop-mediated isothermal amplification and real-time PCR. Med Microbiol Immunol 194:181–185 [CrossRef]
    [Google Scholar]
  7. Kuboki N., Inoue N., Sakurai T., Cello F. D., Grab D. J., Suzuki H., Sugimoto C., Igarashi I. 2003; Loop-mediated isothermal amplification for detection of African trypanosomes. J Clin Microbiol 41:5517–5524 [CrossRef]
    [Google Scholar]
  8. Notomi T., Okayama H., Masubuchi H., Yonekawa T., Watanabe K., Amino N. 2000; Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:E63 [CrossRef]
    [Google Scholar]
  9. NTP 2004 Annual report of National Tuberculosis Control Programme Nepal His Majesty's Government of Nepal, Ministry of Health, Department of Health Services;
    [Google Scholar]
  10. Parida M., Inoue G. P. S., Hasebe F., Morita K. 2004; Real-time reverse transcription loop-mediated isothermal amplification for rapid detection of West Nile virus. J Clin Microbiol 42:257–263 [CrossRef]
    [Google Scholar]
  11. Parida M., Horioke K., Ishida H., Dash P. K., Saxena P., Jana A. M., Islam M. A., Inoue S., Hosaka N., Morita K. 2005; Rapid detection and differentiation of dengue virus serotypes by a real-time reverse transcription-loop-mediated isothermal amplification assay. J Clin Microbiol 43:2895–2903 [CrossRef]
    [Google Scholar]
  12. Ruiz-Serrano M. J., Albadalejo J., Martinez-Sanchez L., Bouza E. 1998; LCx: a diagnostic alternative for the early detection of Mycobacterium tuberculosis complex. Diagn Microbiol Infect Dis 32:259–264 [CrossRef]
    [Google Scholar]
  13. Suzuki Y., Katsukawa C., Inoue K., Yin Y. P., Tasaka H., Ueba N., Makino M. 1995; Mutations in rpoB gene of rifampicin resistant clinical isolates of Mycobacterium tuberculosis in Japan. Kansenshogaku Zasshi 69:413–419 [CrossRef]
    [Google Scholar]
  14. Takakura S., Tsuchiya S., Isawa Y., Yasukawa K., Hayashi T., Tomita M., Suzuki K., Hasegawa T., Tagami T. other authors 2005; Rapid detection of Mycobacterium tuberculosis in respiratory samples by transcription-reverse transcription concerted reaction with an automated system. J Clin Microbiol 43:5435–5439 [CrossRef]
    [Google Scholar]
  15. Truant J. P., Brett W. A., Thomas W. Jr 1962; Fluorescence microscopy of tubercle bacilli stained with auramine and rhodamine. Henry Ford Hosp Med Bull 10:287–296
    [Google Scholar]
  16. WHO 2007 Global Tuberculosis Control: Surveillance, Planning, Financing . WHO report (document WHO/HTM/TB/2005, 349) Geneva: World Health Organization;
    [Google Scholar]
  17. Woods S. A., Cole S. T. 1989; A rapid method for the detection of potentially viable Mycobacterium leprae in human biopsies: a novel application of PCR. FEMS Microbiol Lett 53:305–309
    [Google Scholar]
  18. Yoda T., Suzuki Y., Yamazaki K., Sakon N., Kanki M., Aoyama I., Tsukamoto T. 2007; Evaluation and application of reverse transcription loop-mediated isothermal amplification for detection of noroviruses. J Med Virol 79:326–334 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47499-0
Loading
/content/journal/jmm/10.1099/jmm.0.47499-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error