1887

Abstract

is a leading cause of nosocomial infection in the developed world, causing antibiotic-associated disease in susceptible populations. The identity of immunogenic proteins is important in understanding the pathogenesis of disease and in the design of vaccines. This study analysed the sera of six patients infected during a hospital outbreak of a ribotype 017 strain. Using a proteomics-based approach, cell wall proteins were separated by two-dimensional PAGE, and immunoreactive proteins were revealed by reaction with patient sera. The identity of immunoreactive proteins was established by MS. Forty-two different proteins were identified in total. All patient sera reacted with at least one component of the surface-layer protein (SLP), four reacted with both components (high- and low-molecular-mass SLPs), and five reacted with one other cell wall protein, suggesting that these are immunodominant antigens. The role of these proteins as potential vaccine candidates and their roles in pathogenesis deserve further study.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47532-0
2008-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/6/750.html?itemId=/content/journal/jmm/10.1099/jmm.0.47532-0&mimeType=html&fmt=ahah

References

  1. Bartlett J. G. 2007; Clostridium difficile : old and new observations. J Clin Gastroenterol 41:Suppl. 1S24–S29 [CrossRef]
    [Google Scholar]
  2. Calabi E., Ward S., Wren B., Paxton T., Panico M., Morris H., Dell A., Dougan G., Fairweather N. 2001; Molecular characterization of the surface layer proteins from Clostridium difficile . Mol Microbiol 40:1187–1199 [CrossRef]
    [Google Scholar]
  3. Cloud J., Kelly C. P. 2007; Update on Clostridium difficile associated disease. Curr Opin Gastroenterol 23:4–9
    [Google Scholar]
  4. Drudy D., Calabi E., Kyne L., Sougioultzis S., Kelly E., Fairweather N., Kelly C. P. 2004; Human antibody response to surface layer proteins in Clostridium difficile infection. FEMS Immunol Med Microbiol 41:237–242 [CrossRef]
    [Google Scholar]
  5. Drudy D., Quinn T., O'Mahony R., Kyne L., O'Gaora P., Fanning S. 2006; High-level resistance to moxifloxacin and gatifloxacin associated with a novel mutation in gyrB in toxin-A-negative, toxin-B-positive Clostridium difficile . J Antimicrob Chemother 58:1264–1267 [CrossRef]
    [Google Scholar]
  6. Hennequin C., Porcheray F., Waligora-Dupriet A., Collignon A., Barc M., Bourlioux P., Karjalainen T. 2001; GroEL (Hsp60) of Clostridium difficile is involved in cell adherence. Microbiology 147:87–96
    [Google Scholar]
  7. Hennequin C., Janoir C., Barc M.-C., Collignon A., Karjalainen T. 2003; Identification and characterization of a fibronectin-binding protein from Clostridium difficile . Microbiology 149:2779–2787 [CrossRef]
    [Google Scholar]
  8. Just I., Gerhard R. 2004; Large clostridial cytotoxins. Rev Physiol Biochem Pharmacol 152:23–47
    [Google Scholar]
  9. Karjalainen T., Waligora-Dupriet A.-J., Cerquetti M., Spigaglia P., Maggioni A., Mauri P., Mastrantonio P. 2001; Molecular and genomic analysis of genes encoding surface-anchored proteins from Clostridium difficile . Infect Immun 69:3442–3446 [CrossRef]
    [Google Scholar]
  10. Kyne L., Warny M., Qamar A., Kelly C. P. 2000; Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin A. N Engl J Med 342:390–397 [CrossRef]
    [Google Scholar]
  11. Pechine S., Gleizes A., Janoir C., Gorges-Kergot R., Barc M.-C., Delmee M., Collignon A. 2005; Immunological properties of surface proteins of Clostridium difficile . J Med Microbiol 54:193–196 [CrossRef]
    [Google Scholar]
  12. Poxton I. R., McCoubrey J., Blair G. 2001; The pathogenicity of Clostridium difficile . Clin Microbiol Infect 7:421–427 [CrossRef]
    [Google Scholar]
  13. Qazi O., Sesardic D., Tierney R., Soderback Z., Crane D., Bolgiano B., Fairweather N. 2006; Reduction of the ganglioside binding activity of the tetanus toxin HC fragment destroys immunogenicity: implications for development of novel tetanus vaccines. Infect Immun 74:4884–4891 [CrossRef]
    [Google Scholar]
  14. Sebaihia M., Wren B. W., Mullany P., Fairweather N. F., Minton N., Stabler R., Thomson N. R., Roberts A. P., Cerdeno-Tarraga A. M. other authors 2006; The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38:779–786 [CrossRef]
    [Google Scholar]
  15. Tasteyre A., Barc M. C., Karjalainen T., Dodson P., Hyde S., Bourlioux P., Borriello P. 2000; A Clostridium difficile gene encoding flagellin. Microbiology 146:957–966
    [Google Scholar]
  16. Voth D. E., Ballard J. D. 2005; Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev 18:247–263 [CrossRef]
    [Google Scholar]
  17. Waligora A. J., Hennequin C., Mullany P., Bourlioux P., Collignon A., Karjalainen T. 2001; Characterization of a cell surface protein of Clostridium difficile with adhesive properties. Infect Immun 69:2144–2153 [CrossRef]
    [Google Scholar]
  18. Wright A., Wait R., Begum S., Crossett B., Nagy J., Brown K., Fairweather N. 2005; Proteomic analysis of cell surface proteins from Clostridium difficile . Proteomics 5:2443–2452 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47532-0
Loading
/content/journal/jmm/10.1099/jmm.0.47532-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error