1887

Abstract

A novel combination of culturing and DNA-based terminal restriction fragment length polymorphism (TRFLP) analysis was used to investigate the effect of probiotics on antibiotic-induced gut microbiota alterations to determine if a probiotic preparation containing bifidobacteria and lactobacilli, taken during and after antibiotic therapy, can minimize antibiotic disturbance of faecal microbiota. Healthy subjects administered amoxicillin/clavulanate were randomized and concomitantly received a placebo or probiotic mixture. The primary end point was similarity of faecal microbiota as determined by culturing and TRFLP from subjects taking probiotics compared to those taking a placebo measured by comparing data from baseline to post-treatment for each subject. TRFLP analysis revealed a high subject to subject variation in the baseline faecal microbiota. The most common antibiotic-induced disturbance was a relative increase in , , and . The mean similarity to the baseline increased over time in both treatment groups, although the probiotic group was less disturbed according to both TRFLP and culture data. The culture method revealed that post-antibiotic faecal microbiota in probiotic-consuming subjects were more similar to the baseline microbiota than the control group (=0.046). Changes in (=0.006) and (=0.030) counts were significantly different between the groups. Analysis of TRFLP data reinforced the trend between groups but was not statistically significant (=0.066). This study indicates this mixture of probiotics promotes a more rapid return to pre-antibiotic baseline faecal bacterial microbiota.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47615-0
2009-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/58/5/663.html?itemId=/content/journal/jmm/10.1099/jmm.0.47615-0&mimeType=html&fmt=ahah

References

  1. Backhed F., Ley R. E., Sonnenburg J. L., Peterson D. A., Gordon J. I. 2005; Host-bacterial mutualism in the human intestine. Science 307:1915–1920 [CrossRef]
    [Google Scholar]
  2. Blackwood C. B., Marsh T., Kim S., Paul E. A. 2003; Terminal restriction fragment length polymorphism data analysis for quantitative comparison of microbial communities. Appl Environ Microbiol 69:926–932 [CrossRef]
    [Google Scholar]
  3. Block S. L., Arrieta A., Seibel M., McLinn S., Eppes S., Murphy M. J. 2003; Single-dose (30 mg/kg) azithromycin compared with 10-day amoxicillin/clavulanate for the treatment of uncomplicated acute otitis media: a double-blind, placebo-controlled, randomized clinical trial. Curr Ther Res 64 (Suppl. 1):30–42 [CrossRef]
    [Google Scholar]
  4. Caron F., Ducrotte P., Lerebours E., Colin R., Humbert G., Denis P. 1991; Effects of amoxicillin-clavulanate combination on the motility of the small intestine in human beings. Antimicrob Agents Chemother 35:1085–1088 [CrossRef]
    [Google Scholar]
  5. Dethlefsen L., Eckburg P. B., Bik E. M., Relman D. A. 2006; Assembly of the human intestinal microbiota. Trends Ecol Evol 21:517–523 [CrossRef]
    [Google Scholar]
  6. Eckburg P. B., Bik E. M., Bernstein C. N., Purdom E., Dethlefsen L., Sargent M., Gill S. R., Nelson K. E., Relman D. A. 2005; Diversity of the human intestinal microbial flora. Science 308:1635–1638 [CrossRef]
    [Google Scholar]
  7. Engelbrektson A. L., Korzenik J. R., Sanders M. E., Clement B. G., Leyer G., Klaenhammer T. R., Kitts C. L. 2006; Analysis of treatment effects on the microbial ecology of the human intestine. FEMS Microbiol Ecol 57:239–250 [CrossRef]
    [Google Scholar]
  8. Ferreira J. B., Rapoport P. B., Sakano E., Kós A. O., Piltcher O. B., Pignatari S. S., Pinheiro S. D., Mocellin M. 2006; Efficacy and safety of sultamicillin (ampicillin/sulbactan) and amoxicillin/clavulanic acid in the treatment of upper respiratory tract infections in adults – an open-label, multicentric, randomized trial. Braz J Otorhinolaryngol 72:104–111
    [Google Scholar]
  9. Gopal P. K., Prasad J., Gill H. S. 2003; Effects of the consumption of Bifidobacterium lactis HN019 (DR10™) and galacto-oligosaccharides on the microflora of the gastrointestinal tract in human subjects. Nutr Res 23:1313–1328 [CrossRef]
    [Google Scholar]
  10. Heilig H. G. H. J., Zoetendal E. G., Vaughan E. E., Marteau P., Akkermans A. D. L., de Vos W. M. 2002; Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol 68:114–123 [CrossRef]
    [Google Scholar]
  11. Jernberg C., Sullivan A., Edlund C., Jansson J. K. 2005; Monitoring of antibiotic-induced alterations in the human intestinal microbiota and detection of probiotic strains by use of terminal restriction fragment length polymorphism. Appl Environ Microbiol 71:501–506 [CrossRef]
    [Google Scholar]
  12. Katz J. A. 2006; Probiotics for the prevention of antibiotic-associated diarrhea and Clostridium difficile diarrhea. J Clin Gastroenterol 40:249–255 [CrossRef]
    [Google Scholar]
  13. Kitts C. L. 2001; Terminal restriction fragment patterns: a tool for comparing microbial communities and assessing community dynamics. Curr Issues Intest Microbiol 2:17–25
    [Google Scholar]
  14. Ley R. E., Backhed F., Turnbaugh P., Lozupone C. A., Knight R. D., Gordon J. E. 2005; Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102:11070–11075 [CrossRef]
    [Google Scholar]
  15. Matsuki T., Watanabe K., Fujimoto J., Miyamoto Y., Takada Y., Matsumoto K., Oyaizu H., Tanaka R. 2002; Development of 16s rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Appl Environ Microbiol 68:5445–5451 [CrossRef]
    [Google Scholar]
  16. Mättö J., Maunuksela L., Kajander K., Palva A., Korpela R., Kassinen A., Saarela M. 2005; Composition and temporal stability of gastrointestinal microbiota in irritable bowel syndrome – a longitudinal study in IBS and control subjects. FEMS Immunol Med Microbiol 43:213–222 [CrossRef]
    [Google Scholar]
  17. Satokari R. M., Vaughan E. E., Akkermans A. D. L., Saarela M., de Vos W. M. 2001; Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67:504–513 [CrossRef]
    [Google Scholar]
  18. Souther N. 2004; Development of a multiplex PCR to identify NCFM, a probiotic organism . MS thesis North Carolina State University;
  19. Vanhoutte T., Huys G., De Brandt E., Swings J. 2004; Temporal stability analysis of the microbiota in human feces by denaturing gradient gel electrophoresis using universal and group-specific 16S rRNA gene primers. FEMS Microbiol Ecol 48:437–446 [CrossRef]
    [Google Scholar]
  20. Zoetendal E. G., Akkermans A. D., de Vos W. M. 1998; Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64:3854–3859
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47615-0
Loading
/content/journal/jmm/10.1099/jmm.0.47615-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error