1887

Abstract

is a spore-forming anaerobic bacterium that is an emerging nosocomial threat; incidence of infection in hospitals is increasing, both in frequency and severity, resulting in considerable morbidity and mortality. In order to adapt to the intestinal environment, must react to the many stresses involved with colonization, including exposure to antibiotics, which represents the most frequent precipitating agent of infection. The responses of to environmental shocks (heat, pH and oxidative shock) and to growth in the presence of subinhibitory concentrations of antibiotics (amoxicillin, clindamycin and metronidazole) were investigated using the 630 microarray developed by the Bacterial Microarray Group at St George's, University of London, UK ( μG@S). Significantly regulated genes and operons were identified that are unique to or common between different stresses. The transcriptional profiles of 630 are similar after growth in the presence of amoxicillin and clindamycin: both increased transcription of ribosomal protein genes and altered transcription of genes encoding surface-associated proteins. In contrast, metronidazole treatment resulted in minor changes in transcription patterns. The general stress response is observed after heat shock and acid shock. Heat shock also affected transcription of several biochemical pathways. Exposure to atmospheric oxygen induced a large number of electron transporters. This study provides a starting point for detailed analyses of numerous genes whose expression is affected by stress and may therefore be involved in adaptation to the host environment.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47657-0
2008-06-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/6/757.html?itemId=/content/journal/jmm/10.1099/jmm.0.47657-0&mimeType=html&fmt=ahah

References

  1. Appelbaum P. C., Bozdogan B. 2004; Vancomycin resistance in Staphylococcus aureus . Clin Lab Med 24:381–402 [CrossRef]
    [Google Scholar]
  2. Bartlett J. G. 2006; Narrative review: the new epidemic of Clostridium difficile -associated enteric disease. Ann Intern Med 145:758–764 [CrossRef]
    [Google Scholar]
  3. Boorstein W. R., Ziegelhoffer T., Craig E. A. 1994; Molecular evolution of the HSP70 multigene family. J Mol Evol 38:1–17
    [Google Scholar]
  4. Borriello S. P., Welch A. R., Barclay F. E., Davies H. A. 1988; Mucosal association by Clostridium difficile in the hamster gastrointestinal tract. J Med Microbiol 25:191–196 [CrossRef]
    [Google Scholar]
  5. Calabi E., Ward S., Wren B., Paxton T., Panico M., Morris H., Dell A., Dougan G., Fairweather N. 2001; Molecular characterization of the surface layer proteins from Clostridium difficile . Mol Microbiol 40:1187–1199 [CrossRef]
    [Google Scholar]
  6. Freeman J., Wilcox M. H. 2001; Antibiotic activity against genotypically distinct and indistinguishable Clostridium difficile isolates. J Antimicrob Chemother 47:244–246 [CrossRef]
    [Google Scholar]
  7. Gupta R. S. 1995; Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol Microbiol 15:1–11 [CrossRef]
    [Google Scholar]
  8. Helmann J. D., Wu M. F., Kobel P. A., Gamo F. J., Wilson M., Morshedi M. M., Navre M., Paddon C. 2001; Global transcriptional response of Bacillus subtilis to heat shock. J Bacteriol 183:7318–7328 [CrossRef]
    [Google Scholar]
  9. Hennequin C., Porcheray F., Waligora-Dupriet A., Collignon A., Barc M., Bourlioux P., Karjalainen T. 2001; GroEL (Hsp60) of Clostridium difficile is involved in cell adherence. Microbiology 147:87–96
    [Google Scholar]
  10. Hoper D., Volker U., Hecker M. 2005; Comprehensive characterization of the contribution of individual SigB-dependent general stress genes to stress resistance of Bacillus subtilis . J Bacteriol 187:2810–2826 [CrossRef]
    [Google Scholar]
  11. Hornbaek T., Jakobsen M., Dynesen J., Nielsen A. K. 2004; Global transcription profiles and intracellular pH regulation measured in Bacillus licheniformis upon external pH upshifts. Arch Microbiol 182:467–474 [CrossRef]
    [Google Scholar]
  12. Jump R. L., Pultz M. J., Donskey C. J. 2007; Vegetative Clostridium difficile survives in room air on moist surfaces and in gastric contents with reduced acidity: a potential mechanism to explain the association between proton pump inhibitors and C. difficile -associated diarrhea?. Antimicrob Agents Chemother 51:2883–2887 [CrossRef]
    [Google Scholar]
  13. Karjalainen T., Waligora-Dupriet A.-J., Cerquetti M., Spigaglia P., Maggioni A., Mauri P., Mastrantonio P. 2001; Molecular and genomic analysis of genes encoding surface-anchored proteins from Clostridium difficile . Infect Immun 69:3442–3446 [CrossRef]
    [Google Scholar]
  14. Lin J. T., Connelly M. B., Amolo C., Otani S., Yaver D. S. 2005; Global transcriptional response of Bacillus subtilis to treatment with subinhibitory concentrations of antibiotics that inhibit protein synthesis. Antimicrob Agents Chemother 49:1915–1926 [CrossRef]
    [Google Scholar]
  15. Loo V. G., Poirier L., Miller M. A., Oughton M., Libman M. D., Michaud S., Bourgault A. M., Nguyen T., Frenette C. other authors 2005; A predominantly clonal multi-institutional outbreak of Clostridium difficile -associated diarrhea with high morbidity and mortality. N Engl J Med 353:2442–2449 [CrossRef]
    [Google Scholar]
  16. Lund E., Kjeldgaard N. O. 1972; Metabolism of guanosine tetraphosphate in Escherichia coli . Eur J Biochem 28:316–326 [CrossRef]
    [Google Scholar]
  17. Macheboeuf P., Contreras-Martel C., Job V., Dideberg O., Dessen A. 2006; Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes. FEMS Microbiol Rev 30:673–691 [CrossRef]
    [Google Scholar]
  18. McAleese F., Wu S. W., Sieradzki K., Dunman P., Murphy E., Projan S., Tomasz A. 2006; Overexpression of genes of the cell wall stimulon in clinical isolates of Staphylococcus aureus exhibiting vancomycin-intermediate- S. aureus -type resistance to vancomycin. J Bacteriol 188:1120–1133 [CrossRef]
    [Google Scholar]
  19. McDonald L. C., Killgore G. E., Thompson A., Owens R. C. Jr, Kazakova S. V., Sambol S. P., Johnson S., Gerding D. N. 2005; An epidemic, toxin gene-variant strain of Clostridium difficile . N Engl J Med 353:2433–2441 [CrossRef]
    [Google Scholar]
  20. Muto A., Kimura A., Osawa S. 1975; Effects of some antibiotics on the stringent control of RNA synthesis in Escherichia coli . Mol Gen Genet 139:321–327 [CrossRef]
    [Google Scholar]
  21. Pane-Farre J., Jonas B., Forstner K., Engelmann S., Hecker M. 2006; The σ B regulon in Staphylococcus aureus and its regulation. Int J Med Microbiol 296:237–258 [CrossRef]
    [Google Scholar]
  22. Petersohn A., Brigulla M., Haas S., Hoheisel J. D., Volker U., Hecker M. 2001; Global analysis of the general stress response of Bacillus subtilis . J Bacteriol 183:5617–5631 [CrossRef]
    [Google Scholar]
  23. Rider J. E., Hacker A., Mackintosh C. A., Pegg A. E., Woster P. M., Casero R. A. Jr 2007; Spermine and spermidine mediate protection against oxidative damage caused by hydrogen peroxide. Amino Acids 33:231–240 [CrossRef]
    [Google Scholar]
  24. Rosen R., Ron E. Z. 2002; Proteome analysis in the study of the bacterial heat-shock response. Mass Spectrom Rev 21:244–265 [CrossRef]
    [Google Scholar]
  25. Schumann W. 2003; The Bacillus subtilis heat shock stimulon. Cell Stress Chaperones 8:207–217 [CrossRef]
    [Google Scholar]
  26. Sebaihia M., Wren B. W., Mullany P., Fairweather N. F., Minton N., Stabler R., Thomson N. R., Roberts A. P., Cerdeno-Tarraga A. M. other authors 2006; The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38:779–786 [CrossRef]
    [Google Scholar]
  27. Shah P., Marquart M., Quin L. R., Swiatlo E. 2006; Cellular location of polyamine transport protein PotD in Streptococcus pneumoniae . FEMS Microbiol Lett 261:235–237 [CrossRef]
    [Google Scholar]
  28. Stabler R. A., Gerding D. N., Songer J. G., Drudy D., Brazier J. S., Trinh H. T., Witney A. A., Hinds J., Wren B. W. 2006; Comparative phylogenomics of Clostridium difficile reveals clade specificity and microevolution of hypervirulent strains. J Bacteriol 188:7297–7305 [CrossRef]
    [Google Scholar]
  29. Tomas C. A., Beamish J., Papoutsakis E. T. 2004; Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum . J Bacteriol 186:2006–2018 [CrossRef]
    [Google Scholar]
  30. Utaida S., Dunman P. M., Macapagal D., Murphy E., Projan S. J., Singh V. K., Jayaswal R. K., Wilkinson B. J. 2003; Genome-wide transcriptional profiling of the response of Staphylococcus aureus to cell-wall-active antibiotics reveals a cell-wall-stress stimulon. Microbiology 149:2719–2732 [CrossRef]
    [Google Scholar]
  31. van Schaik W., van der Voort M., Molenaar D., Moezelaar R., de Vos W. M., Abee T. 2007; Identification of the σ B regulon of Bacillus cereus and conservation of σ B -regulated genes in low-GC-content gram-positive bacteria. J Bacteriol 189:4384–4390 [CrossRef]
    [Google Scholar]
  32. Ware D., Jiang Y., Lin W., Swiatlo E. 2006; Involvement of potD in Streptococcus pneumoniae polyamine transport and pathogenesis. Infect Immun 74:352–361 [CrossRef]
    [Google Scholar]
  33. Warny M., Pepin J., Fang A., Killgore G., Thompson A., Brazier J., Frost E., McDonald L. C. 2005; Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366:1079–1084 [CrossRef]
    [Google Scholar]
  34. Wen X. P., Pang X. M., Matsuda N., Kita M., Inoue H., Hao Y. J., Honda C., Moriguchi T. 2007; Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res in press
  35. Wiegert T., Homuth G., Versteeg S., Schumann W. 2001; Alkaline shock induces the Bacillus subtilis sigma(W) regulon. Mol Microbiol 41:59–71 [CrossRef]
    [Google Scholar]
  36. Wust J., Hardegger U. 1983; Transferable resistance to clindamycin, erythromycin, and tetracycline in Clostridium difficile . Antimicrob Agents Chemother 23:784–786 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47657-0
Loading
/content/journal/jmm/10.1099/jmm.0.47657-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error