1887

Abstract

The hospital environment is particularly susceptible to contamination by bacterial pathogens that grow on surfaces in biofilms. The effects of hospital biocides on two nosocomial pathogens, meticillin-resistant (MRSA) and , growing as free-floating (planktonic) and adherent biofilm populations (sessile) were examined. Clinical isolates of MRSA and were grown as biofilms on discs of materials found in the hospital environment (stainless steel, glass, polyethylene and Teflon) and treated with three commonly used hospital biocides containing benzalkonium chloride (1 % w/v), chlorhexidine gluconate (4 % w/v) and triclosan (1 % w/v). Cell viability following biocide treatment was determined using an XTT assay and the LIVE/DEAD BacLight Bacterial Viability kit. The minimum bactericidal concentration (MBC) of all biocides for planktonic populations of both organisms was considerably less than the concentration recommended for use by the manufacturer. However, when isolates were grown as biofilms, the biocides were ineffective at killing bacteria at the concentrations recommended for use. Following biocide treatment, 0–11 % of cells in MRSA biofilms survived, and up to 80 % of cells in biofilms survived. This study suggests that although biocides may be effective against planktonic populations of bacteria, some biocides currently used in hospitals are ineffective against nosocomial pathogens growing as biofilms attached to surfaces and fail to control this reservoir for hospital-acquired infection.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47668-0
2008-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/8/966.html?itemId=/content/journal/jmm/10.1099/jmm.0.47668-0&mimeType=html&fmt=ahah

References

  1. Brooks S. E., Walczak M. A., Hameed R., Coonan P. 2002; Chlorhexidine resistance in antibiotic-resistant bacteria isolated from the surfaces of dispensers of soap containing chlorhexidine. Infect Control Hosp Epidemiol 23:692–695 [CrossRef]
    [Google Scholar]
  2. Cerca N., Martins S., Cerca F., Jefferson K. K., Pier G. B., Oliveira R., Azeredo J. 2005; Comparative assessment of antibiotic susceptibility of coagulase negative staphylococci in biofilm versus planktonic culture as assessed by bacterial enumeration or rapid XTT colorimetry. J Antimicrob Chemother 56:331–336 [CrossRef]
    [Google Scholar]
  3. Chmielewski R. A. N., Frank J. F. 2003; Biofilm formation and control in food processing facilities. Comprehensive Reviews in Food Science and Food Safety 2:22–32 [CrossRef]
    [Google Scholar]
  4. CLSI 2002 M7–A5. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically-Second Edition : Approved Standard, 5th edn. Villanova, PA, USA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  5. Costerton J. W., Lewandowski Z., De Beer D., Caldwell D., Korker D., Jones G. 1994; Biofilms, the customized microniche. J Bacteriol 176:2137–2142
    [Google Scholar]
  6. Cunha B. A. 2001; Nosocomial pneumonia. Diagnostic and therapeutic considerations. Med Clin North Am 85:79–114 [CrossRef]
    [Google Scholar]
  7. Diekema D. J., Pfaller M. A., Schmitz F. J., Smayevsky J., Bell J., Jones R. N., Beach M. SENTRY Participants Group 2001; Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin Infect Dis 32 (Suppl. 2):S114–S132 [CrossRef]
    [Google Scholar]
  8. Donlan R. M., Costerton J. W. 2002; Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193 [CrossRef]
    [Google Scholar]
  9. EARSS 2003 On-going surveillance of S. pneumoniae , S. aureus , E. coli , E. faecium ,E. faecalis Bilthoven, the Netherlands: RIVM;
    [Google Scholar]
  10. Fluit A. C., Wielders C. L., Verhoef J., Schmitz F. J. 2001; Epidemiology and susceptibility of 3,051 Staphylococcus aureus isolates from 25 university hospitals participating in the European SENTRY study. J Clin Microbiol 39:3727–3732 [CrossRef]
    [Google Scholar]
  11. Gales A. C., Jones R. N., Turnidge J., Rennie R., Ramphal R. 2001; Characterization of Pseudomonas aeruginosa isolates: occurrence rates, antimicrobial susceptibility patterns, and molecular typing in the Global SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin Infect Dis 32:S146–S155 [CrossRef]
    [Google Scholar]
  12. Gander S. 1996; Bacterial biofilms: resistance to antimicrobial agents. J Antimicrob Chemother 37:1047–1050 [CrossRef]
    [Google Scholar]
  13. Gilbert P., McBain A. J. 2003; Potential impact of increased use of biocides in consumer products on prevalence of antibiotic resistance. Clin Microbiol Rev 16:189–208 [CrossRef]
    [Google Scholar]
  14. Gilbert P., Allison D. G., McBain A. J. 2002; Biofilms in vitro and in vivo : do singular mechanisms imply cross-resistance?. J Appl Microbiol 92:98S–110S [CrossRef]
    [Google Scholar]
  15. Govan J. R. W., Deretic V. 1996; Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia . Microbiol Rev 60:539–574
    [Google Scholar]
  16. Guinto C. H., Bottone E. J., Raffalli J. T., Montecalvo M. A., Wormser G. P. 2002; Evaluation of dedicated stethoscopes as a potential source of nosocomial pathogens. Am J Infect Control 30:499–502 [CrossRef]
    [Google Scholar]
  17. Hyde F. W., Alberg M., Smith K. 1997; Comparison of fluorinated polymers against stainless steel, glass and polypropylene in microbial biofilm adherence and removal. J Ind Microbiol Biotechnol 19:142–149 [CrossRef]
    [Google Scholar]
  18. Lawrence D. 2002; Clues to mechanism of Pseudomonas resistance in cystic fibrosis. Lancet 359:1410
    [Google Scholar]
  19. Lewis K. 2001; The riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007 [CrossRef]
    [Google Scholar]
  20. Livermore D. M. 2000; Antibiotic resistance in staphylococci. Int J Antimicrob Agents 16:S3–S10 [CrossRef]
    [Google Scholar]
  21. Mah T. F., O'Toole G. A. 2001; Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39 [CrossRef]
    [Google Scholar]
  22. National Audit Office 2004 Improving Patient Care by Reducing the Risk of Hospital Acquired Infection: a Progress Report London: Stationery Office;
    [Google Scholar]
  23. Neely A. N., Maley M. P. 2000; Survival of enterococci and staphylococci on hospital fabrics and plastic. J Clin Microbiol 38:724–726
    [Google Scholar]
  24. O'Toole G. A. 2002; A resistance switch. Nature 416:695–696 [CrossRef]
    [Google Scholar]
  25. Potera C. 1999; Forging a link between biofilms and disease. Science 283:1837–1838 [CrossRef]
    [Google Scholar]
  26. Ramage G., Vande Walle K., Wickes B. L., López-Ribot J. L. 2001; Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother 45:2475–2479 [CrossRef]
    [Google Scholar]
  27. Reacher M. H., Shah A., Livermore D. M., Wale M. C. J., Graham C., Johnson A. P., Heine H., Monnickendam M. A., Barker K. F. other authors 2000; Bacteraemia and antibiotic resistance of its pathogens reported in England and Wales between 1990 and 1998: trend analysis. BMJ 320:213–216 [CrossRef]
    [Google Scholar]
  28. Rossolini G. M., Mantengoli E. 2005; Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa . Clin Microbiol Infect 11:17–32
    [Google Scholar]
  29. Sheehan E., McKenna J., Mulhall K. J., Marks P., McCormack D. 2004; Adhesion of Staphylococcus to orthopaedic metals, an in vivo study. J Orthop Res 22:39–43 [CrossRef]
    [Google Scholar]
  30. Sopwith W., Hart T., Garner P. 2002; Preventing infection from reusable medical equipment: a systematic review. BMC Infect Dis 2:4 [CrossRef]
    [Google Scholar]
  31. Spoering A. L., Lewis K. 2001; Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183:6746–6751 [CrossRef]
    [Google Scholar]
  32. Stickler D. J. 2002; Susceptibility of antibiotic-resistant Gram-positive bacteria to biocides: a perspective from the study of catheter biofilms. Symp Ser Soc Appl Microbiol 31:163S–170S
    [Google Scholar]
  33. Tunney M. M., Ramage G., Field T. R., Moriarty T. F., Storey D. G. 2004; Rapid colorimetric assay for antimicrobial susceptibility testing of Pseudomonas aeruginosa . Antimicrob Agents Chemother 48:1879–1881 [CrossRef]
    [Google Scholar]
  34. Vincent J.-L. 2003; Nosocomial infections in adult intensive-care units. Lancet 361:2068–2077 [CrossRef]
    [Google Scholar]
  35. Wozniak D. J., Wyckoff T. J. O., Starkey M., Keyser R., Azadi P., O'Toole G. A., Parsek M. R. 2003; Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci U S A 100:7907–7912 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47668-0
Loading
/content/journal/jmm/10.1099/jmm.0.47668-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error