1887

Abstract

TM7 is a recently described subgroup of Gram-positive uncultivable bacteria originally found in natural environmental habitats. An association of the TM7 bacterial division with the inflammatory pathogenesis of periodontitis has been previously shown. This study investigated TM7 phylogenies in patients with inflammatory bowel diseases (IBDs). The mucosal microbiota of patients with active Crohn's disease (CD; =42) and ulcerative colitis (UC; =31) was compared with that of controls (=33). TM7 consortia were examined using molecular techniques based on 16S rRNA genes, including clone libraries, sequencing and hybridization. TM7 molecular signatures could be cloned from mucosal samples of both IBD patients and controls, but the composition of the clone libraries differed significantly. Taxonomic analysis of the sequences revealed a higher diversity of TM7 phylotypes in CD (23 different phylotypes) than in UC (10) and non-IBD controls (12). All clone libraries showed a high number of novel sequences (21 for controls, 34 for CD and 29 for UC). A highly atypical base substitution for bacterial 16S rRNA genes associated with antibiotic resistance was detected in almost all sequences from CD (97.3 %) and UC (100 %) patients compared to only 65.1 % in the controls. TM7 bacteria might play an important role in IBD similar to that previously described in oral inflammation. The alterations of TM7 bacteria and the genetically determined antibiotic resistance of TM7 species in IBD could be a relevant part of a more general alteration of bacterial microbiota in IBD as recently found, e.g. as a promoter of inflammation at early stages of disease.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47719-0
2008-12-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/12/1569.html?itemId=/content/journal/jmm/10.1099/jmm.0.47719-0&mimeType=html&fmt=ahah

References

  1. Bassler B. L. 1999; How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol 2:582–587 [CrossRef]
    [Google Scholar]
  2. Brinig M. M., Lepp P. W., Ouverney C. C., Armitage G. C., Relman D. A. 2003; Prevalence of bacteria of division TM7 in human subgingival plaque and their association with disease. Appl Environ Microbiol 69:1687–1694 [CrossRef]
    [Google Scholar]
  3. Chapman R. W., Selby W. S., Jewell D. P. 1986; Controlled trial of intravenous metronidazole as an adjunct to corticosteroids in severe ulcerative colitis. Gut 27:1210–1212 [CrossRef]
    [Google Scholar]
  4. Cole J. R., Chai B., Marsh T. L., Farris R. J., Wang Q., Kulam S. A., Chandra S., McGarrell D. M., Schmidt T. M. other authors 2003; The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443 [CrossRef]
    [Google Scholar]
  5. Eckburg P. B., Relman D. A. 2007; The role of microbes in Crohn's disease. Clin Infect Dis 44:256–262 [CrossRef]
    [Google Scholar]
  6. Forghani B., Dupuis K. W., Schmidt N. J. 1985; Rapid detection of herpes simplex virus DNA in human brain tissue by in situ hybridization. J Clin Microbiol 22:656–658
    [Google Scholar]
  7. Geboes K., Dalle I. 2002; Influence of treatment on morphological features of mucosal inflammation. Gut 50 (Suppl. 3):iii37–iii42
    [Google Scholar]
  8. Geboes K., Riddell R., Ost A., Jensfelt B., Persson T., Lofberg R. 2000; A reproducible grading scale for histological assessment of inflammation in ulcerative colitis. Gut 47:404–409 [CrossRef]
    [Google Scholar]
  9. Good I. J. 1953; The population frequencies of species and the estimation of the population parameters. Biometrika 40:237–264 [CrossRef]
    [Google Scholar]
  10. Hooper L. V., Gordon J. I. 2001; Commensal host-bacterial relationships in the gut. Science 292:1115–1118 [CrossRef]
    [Google Scholar]
  11. Hooper L. V., Bry L., Falk P. G., Gordon J. I. 1998; Host-microbial symbiosis in the mammalian intestine: exploring an internal ecosystem. Bioessays 20:336–343 [CrossRef]
    [Google Scholar]
  12. Hugenholtz P., Goebel B. M., Pace N. R. 1998; Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774
    [Google Scholar]
  13. Hugenholtz P., Tyson G. W., Webb R. I., Wagner A. M., Blackall L. L. 2001; Investigation of candidate division TM7, a recently recognized major lineage of the domain bacteria with no known pure-culture representatives. Appl Environ Microbiol 67:411–419 [CrossRef]
    [Google Scholar]
  14. Katouli M., Bark T., Ljungqvist O., Svenberg T., Mollby R. 1994; Composition and diversity of intestinal coliform flora influence bacterial translocation in rats after hemorrhagic stress. Infect Immun 62:4768–4774
    [Google Scholar]
  15. Kerstens H. M., Poddighe P. J., Hanselaar A. G. 1994; Double-target in situ hybridization in brightfield microscopy. J Histochem Cytochem 42:1071–1077 [CrossRef]
    [Google Scholar]
  16. Kumar P. S., Griffen A. L., Barton J. A., Paster B. J., Moeschberger M. L., Leys E. J. 2003; New bacterial species associated with chronic periodontitis. J Dent Res 82:338–344 [CrossRef]
    [Google Scholar]
  17. Mai V., Morris J. G. Jr 2004; Colonic bacterial flora: changing understandings in the molecular age. J Nutr 134:459–464
    [Google Scholar]
  18. Malchow H., Ewe K., Brandes J. W., Goebell H., Ehms H., Sommer H., Jesdinsky H. 1984; European Cooperative Crohn's Disease Study (ECCDS): results of drug treatment. Gastroenterology 86:249–266
    [Google Scholar]
  19. Manichanh C., Rigottier-Gois L., Bonnaud E., Gloux K., Pelletier E., Frangeul L., Nalin R., Jarrin C., Chardon P. other authors 2006; Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 55:205–211 [CrossRef]
    [Google Scholar]
  20. Marteau P. 2000; Role of the intestinal flora in gastrointestinal diseases. Lancet 356:s28 [CrossRef]
    [Google Scholar]
  21. Ott S. J., Musfeldt M., Wenderoth D. F., Hampe J., Brant O., Folsch U. R., Timmis K. N., Schreiber S. 2004; Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53:685–693 [CrossRef]
    [Google Scholar]
  22. Ott S. J., El Mokhtari N. E., Musfeldt M., Hellmig S., Freitag S., Rehman A., Kuhbacher T., Nikolaus S., Namsolleck P. other authors 2006; Detection of diverse bacterial signatures in atherosclerotic lesions of patients with coronary heart disease. Circulation 113:929–937 [CrossRef]
    [Google Scholar]
  23. Ouverney C. C., Armitage G. C., Relman D. A. 2003; Single-cell enumeration of an uncultivated TM7 subgroup in the human subgingival crevice. Appl Environ Microbiol 69:6294–6298 [CrossRef]
    [Google Scholar]
  24. Recht M. I., Puglisi J. D. 2001; Aminoglycoside resistance with homogeneous and heterogeneous populations of antibiotic-resistant ribosomes. Antimicrob Agents Chemother 45:2414–2419 [CrossRef]
    [Google Scholar]
  25. Sansonetti P. J. 2004; War and peace at mucosal surfaces. Nat Rev Immunol 4:953–964 [CrossRef]
    [Google Scholar]
  26. Schloss P. D., Handelsman J. 2005; Introducing dotur, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506 [CrossRef]
    [Google Scholar]
  27. Schloss P. D., Larget B. R., Handelsman J. 2004; Integration of microbial ecology and statistics: a test to compare gene libraries. Appl Environ Microbiol 70:5485–5492 [CrossRef]
    [Google Scholar]
  28. Schreiber S., Rosenstiel P., Albrecht M., Hampe J., Krawczak M. 2005; Genetics of Crohn disease, an archetypal inflammatory barrier disease. Nat Rev Genet 6:376–388
    [Google Scholar]
  29. Seksik P., Rigottier-Gois L., Gramet G., Sutren M., Pochart P., Marteau P., Jian R., Dore J. 2003; Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon. Gut 52:237–242 [CrossRef]
    [Google Scholar]
  30. Singleton D. R., Furlong M. A., Rathbun S. L., Whitman W. B. 2001; Quantitative comparisons of 16S rRNA gene sequence libraries from environmental samples. Appl Environ Microbiol 67:4374–4376 [CrossRef]
    [Google Scholar]
  31. Smith S., Vaughan E. E., De Vos W. M. 2000; Quorum sensing within the gut. Microb Ecol Health Dis 2:Suppl.81–92
    [Google Scholar]
  32. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  33. Wang M., Ahrne S., Jeppsson B., Molin G. 2005; Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol 54:219–231 [CrossRef]
    [Google Scholar]
  34. Zhou J., Xia B., Treves D., Wu L., Marsh T., O'Neill R., Palumbo A., Tiedje J. 2002; Spatial and resource factors influencing high microbial diversity in soil. Appl Environ Microbiol 68:326–334 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47719-0
Loading
/content/journal/jmm/10.1099/jmm.0.47719-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error