1887

Abstract

The purpose of the present study was to identify 12 isolates that had been obtained from root canals of teeth requiring endodontic therapy and from periodontal pockets in severe marginal periodontitis, and to determine whether these isolates exhibited extracellular proteolytic activity and, using assays, whether any such activity could degrade substrates that would be pathophysiologically relevant with regard to the production of endodontic and periodontal lesions. Biochemical and carbohydrate fermentation patterns were used in the identification of all strains, which was confirmed by determination of the16S rRNA gene sequence for strain BJ0055. Screening for production of extracellular proteolytic activity by all strains was done with a general proteinase substrate. All isolates were identified as representing and all exhibited extracellular proteolytic activity. The putative pathophysiological relevance of extracellular proteinase production in strain BJ0055 was assessed using fluorophore-labelled elastin and collagen and several chromogenic peptides. Probable classes of proteinases acting on each substrate were investigated using class-specific inhibitors. Activity–pH profiles were determined in buffers at different pH values. Extracellular activities that were caseinolytic, elastinolytic, collagenolytic, glutamyl endopeptidase-like, and alanyl tripeptidyl peptidase-like were observed. No trypsin-like activities were detected. Serine- and chymotrypsin-like serine proteinase activities were detected, with activity observed at neutral and alkaline, but not acidic, pH. strains isolated from endodontic and periodontal lesions exhibited extracellular activities that degrade elastin, collagen and other substrates. These activities may be virulence factors that contribute to tissue damage in apical periodontitis and severe marginal periodontitis.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47754-0
2008-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/5/643.html?itemId=/content/journal/jmm/10.1099/jmm.0.47754-0&mimeType=html&fmt=ahah

References

  1. Aoyama M., Yasuda M., Nakachi K., Kobamoto N., Oku H., Kato F. 2000; Soybean-milk-coagulating activity of Bacillus pumilus derives from a serine protease. Appl Microbiol Biotechnol 53:390–395 [CrossRef]
    [Google Scholar]
  2. Ballinger M. D., Wells J. A. 1998; Subtilisin. In Handbook of Proteolytic Enzymes pp 289–294 Edited by Barrett A. J., Rawlings N. D., Woessner J. F. San Diego: Academic Press;
    [Google Scholar]
  3. Banerjee C., Bustamante C. I., Wharton R., Wade J. C. 1988; Bacillus infections in patients with cancer. Arch Intern Med 148:1769–1774 [CrossRef]
    [Google Scholar]
  4. Bernstein D. I., Lummus Z. L., Santilli G., Siskosky J., Bernstein I. L. 1995; Machine operator's lung: a hypersensitivity pneumonitis disorder associated with exposure to metalworking fluid aerosols. Chest 108:636–641 [CrossRef]
    [Google Scholar]
  5. Beynon R. J., Salvesen G. 1989; Commercially available protease inhibitors. In Proteolytic Enzymes: A Practical Approach . pp 242–247 Edited by Beynon R. J., Bond J. S. Oxford: IRL Press;
  6. Bickel M., Cimasoni G. 1985; The pH of human crevicular fluid measured by a new microanalytical technique. J Periodontal Res 20:35–40 [CrossRef]
    [Google Scholar]
  7. Brophy P. F., Knoop F. C. 1982; Bacillus pumilus in the induction of clindamycin-associated enterocolitis in guinea pigs. Infect Immun 35:289–295
    [Google Scholar]
  8. Callegan M. C., Booth M. C., Jett B. D., Gilmore M. S. 1999; Pathogenesis of gram-positive bacterial endophthalmitis. Infect Immun 67:3348–3356
    [Google Scholar]
  9. Chavrier C. 1990; The elastic system fibres in healthy human gingiva. Arch Oral Biol 35:223S–225S [CrossRef]
    [Google Scholar]
  10. Cozlin A., Barthelemy S., Garnotel R., Antonicelli F., Kaplan H., Wornebeck W., Lorimier S. 2006; Elastolysis induces collagenolysis in a gingival lamina propria model. J Dent Res 85:745–750 [CrossRef]
    [Google Scholar]
  11. Crouch E., Bornstein P. 1978; Characterization of a type IV procollagen synthesized by human amniotic fluid cells in culture. J Biol Chem 254:4197–4204
    [Google Scholar]
  12. Dahlen G., Moller A. J. R. 1992; Microbiology of endodontic infections. In Contemporary Oral Microbiology and Immunology pp 444–475 Edited by Slots J., Taubman M. A. St Louis: Mosby;
    [Google Scholar]
  13. Debelle L., Tamburro A. M. 1999; Elastin: molecular description and function. Int J Biochem Cell Biol 31:261–272 [CrossRef]
    [Google Scholar]
  14. Drobniewski F. A. 1993; Bacillus cereus and related species. Clin Microbiol Rev 6:324–338
    [Google Scholar]
  15. Duca L., Debelle L., Debret R., Antonicelli F., Hornebeck W., Haye B. 2002; The elastin peptides-mediated induction of pro-collagenase-1 production by human fibroblasts involves activation of MEK/ERK pathway via PKA- and PI3K-dependent signaling. FEBS Lett 524:193–198 [CrossRef]
    [Google Scholar]
  16. Eley B. M., Cox S. W. 1992; Cathepsin B/L-, elastase-, tryptase-, trypsin-, and dipeptidyl peptidase IV-like activities in gingival crevicular fluid: correlation with clinical parameters in untreated chronic periodontitis patients. J Periodontal Res 27:62–69 [CrossRef]
    [Google Scholar]
  17. Ewald C., Kuhn S., Kalff R. 2006; Pyogenic infections of the central nervous system secondary to dental affections – a report of 6 cases. Neurosurg Rev 29:163–167 [CrossRef]
    [Google Scholar]
  18. Fabian J. 1970; Purification and some properties of the extracellular protease of Bacillus pumilus . Folia Microbiol (Praha) 15:169–175 [CrossRef]
    [Google Scholar]
  19. Golabek A. A., Kida E. 2006; Tripeptidyl-peptidase I in health and disease. Biol Chem 387:1091–1099
    [Google Scholar]
  20. Granum P. E., Lund T. 1997; Bacillus cereus and its food poisoning toxins. FEMS Microbiol Lett 157:223–228 [CrossRef]
    [Google Scholar]
  21. Gupta R., Beg Q. K., Lorenz P. 2002; Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32 [CrossRef]
    [Google Scholar]
  22. Harrington D. J. 1996; Bacterial collagenases and collagen-degrading enzymes and their potential role in human disease. Infect Immun 64:1885–1891
    [Google Scholar]
  23. Helgason E., Caugant D. A., Olsen I., Kolstø A.-B. 2000; Genetic structure of population of Bacillus cereus and B. thuringiensis isolates associated with periodontitis and other human infections. J Clin Microbiol 38:1615–1622
    [Google Scholar]
  24. Holt S. C., Ebersole J. L. 2005; Porphyromonas gingivalis, Treponema denticola , and Tannerella forsythia : the “red complex,” a prototype polybacterial pathogenic consortium in periodontitis. Periodontol 2000; 38:72–122 [CrossRef]
    [Google Scholar]
  25. Hoult B., Tuxford A. F. 1991; Toxin production by Bacillus pumilus . J Clin Pathol 44:455–458 [CrossRef]
    [Google Scholar]
  26. Johnson B. T., Mayo J. A., Jeansonne B. G. 1999; β -Hemolytic streptococci and other β -hemolytic organisms in apical periodontitis and severe marginal periodontitis. Endod Dent Traumatol 15:102–108 [CrossRef]
    [Google Scholar]
  27. Jones L. J., Upson R. H., Haugland R. P., Panchuk-Voloshina N., Zhou M., Haugland R. P. 1997; Quenched BODIPY dye-labeled casein substrates for the assay of protease activity by direct fluorescence measurement. Anal Biochem 251:144–152 [CrossRef]
    [Google Scholar]
  28. Kakudo S., Kikuchi N., Kitadokoro K., Fujiwara T., Nakamura E., Okamoto H., Shin M., Tamaki M., Teraoka H. other authors 1992; Purification, characterization, cloning, and expression of a glutamic acid-specific protease from Bacillus licheniformis ATCC 14580. J Biol Chem 267:23782–23788
    [Google Scholar]
  29. Kato T., Yamagata Y., Atai T., Ichishima E. 1992; Purification of a new extracellular 90-kDa serine proteinase with isoelectric point of 3.9 from Bacillus subtilis (natto) and elucidation of its distinct mode of action. Biosci Biotechnol Biochem 56:1166–1168 [CrossRef]
    [Google Scholar]
  30. Kumar C. G. 2002; Purification and characterization of a thermostable alkaline protease from alkalophilic Bacillus pumilus . Lett Appl Microbiol 34:13–17 [CrossRef]
    [Google Scholar]
  31. Leshchinskaya I. B., Shakirov E. V., Itskovitch E. L., Balaban N. P., Mardanova A. M., Sharipova M. R., Blagova E. V., Levdikov V. M., Kuranova I. P. other authors 1997; Glutamyl endopeptidase of Bacillus intermedius ,strain 3–19. Purification, properties, and crystallization. Biochemistry (Mosc) 62:903–908
    [Google Scholar]
  32. Logan N. A., Berkeley R. C. W. 1984; Identification of Bacillus strains using the API system. J Gen Microbiol 130:1871–1882
    [Google Scholar]
  33. Loos B. G., Tjoa S. 2005; Host-derived diagnostic markers for periodontitis: do they exist in gingival crevicular fluid?. Periodontol 2000; 39:53–72 [CrossRef]
    [Google Scholar]
  34. Makinen K. K., Makinen P.-L. 1987; Purification and properties of an extracellular collagenolytic protease produced by the human oral bacterium Bacillus cereus (strain Soc 67. J Biol Chem 262:12488–12495
    [Google Scholar]
  35. Marsh P. D., Martin M. V. 1992 Oral Microbiology , 3rd edn. New York: Chapman & Hall;
    [Google Scholar]
  36. McDonald J. K. 1998; Tripeptidyl-peptidase I. In Handbook of Proteolytic Enzymes pp 539–540 Edited by Barrett A. J., Rawlings N. D., Woessner J. F. San Diego: Academic Press;
    [Google Scholar]
  37. Miyaji T., Otta Y., Nakagawa T., Watanabe T., Niimura Y., Tomizuka N. 2006; Purification and molecular characterization of subtilisin-like alkaline protease BPP-A from Bacillus pumilus strain MS-1. Lett Appl Microbiol 42:242–247 [CrossRef]
    [Google Scholar]
  38. Molander A., Reit C., Dahlen D., Kvist T. 1998; Microbiological status of root-filled teeth with apical periodontitis. Int Endod J 31:1–7 [CrossRef]
    [Google Scholar]
  39. Nadkarni M. A., Martin F. E., Jacques N. A., Hunter N. 2002; Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148:257–266
    [Google Scholar]
  40. Nonaka T., Fujihashi M., Kita A., Saeki K., Ito S., Horikoshi K., Miki K. 2004; The crystal structure of an oxidatively stable subtilisin-like serine protease, KP-43, with a C-terminal β -barrel domain. J Biol Chem 279:47344–47351 [CrossRef]
    [Google Scholar]
  41. Paster B. J., Olsen I., Aas J. A., Dewhirst F. E. 2006; The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000; 42:80–87 [CrossRef]
    [Google Scholar]
  42. Priest F. G. 1985; Synthesis and secretion of extracellular enzymes by bacilli. Microbiol Sci 2:278–282
    [Google Scholar]
  43. Rawlings N. D., Morton F. R., Barrett A. J. 2006; MEROPS: the peptidase database. Nucleic Acids Res 34:D270–D272 (URL:) http://merops.sanger.ac.uk [CrossRef]
    [Google Scholar]
  44. Rinderknecht H., Geokas M. C., Silverman P., Haverback B. J. 1968; A new ultrasensitive method for the determination of proteolytic activity. Clin Chim Acta 21:197–203 [CrossRef]
    [Google Scholar]
  45. Rosenbloom J., Abrams W. R., Mecham R. 1993; Extracellular matrix 4: the elastic fiber. FASEB J 7:1208–1218
    [Google Scholar]
  46. Socransky S. S. 1979; Criteria for the infectious agents in dental caries and periodontal disease. J Clin Periodontol 6:16–21 [CrossRef]
    [Google Scholar]
  47. Socransky S. S., Haffajee A. D. 1997; Microbiology of periodontal disease.. In Clinical Periodontology and Implant Dentistry , 3rd edn. pp 138–188 Edited by Linde J., Karing T., Lang N. P. Copenhagen: Munksgaard;
    [Google Scholar]
  48. Soderling E., Paunio K. U. 1981; Conditions of production and properties of the collagenolytic enzymes by two Bacillus strains from dental plaque. J Periodontal Res 16:513–523
    [Google Scholar]
  49. Sunde P. T., Olsen I., Lind P. O., Tronstad L. 2000; Extraradicular infection: a methodological study. Endod Dent Traumatol 16:84–90 [CrossRef]
    [Google Scholar]
  50. Sunde P. T., Olsen I., Debelian G. J., Tronstad L. 2002; Microbiology of periapical lesions refractory to endodontic therapy. J Endod 28:304–310 [CrossRef]
    [Google Scholar]
  51. Swann D. A., Sotman S. S. 1980; The chemical composition of bovine vitreous-humour collagen fibres. Biochem J 185:545–554
    [Google Scholar]
  52. Terleckyj B., Willett N. P., Shockman G. D. 1975; Growth of several cariogenic strains of oral streptococci in a chemically defined medium. Infect Immun 11:649–655
    [Google Scholar]
  53. Tran-Chau P. T., Urbanek H. 1974; Serine neutral proteinase from Bacillus pumilus as metalloenzyme. Acta Microbiol Pol B 6:21–25
    [Google Scholar]
  54. Travis J., Potempa J., Maeda H. 1995; Are bacterial proteinases pathogenic factors?. Trends Microbiol 3:405–407 [CrossRef]
    [Google Scholar]
  55. Travis J., Pike R., Imamura T., Potempa J. 1997; Porphyromonas gingivalis proteinases as virulence factors in the development of periodontitis. J Periodontal Res 32:120–125 [CrossRef]
    [Google Scholar]
  56. Tuazon C. U., Murray H. W., Levy C., Solny M. N., Curtin J. A., Sheagren J. N. 1979; Serious infections from Bacillus sp. JAMA 241:1137–1140 [CrossRef]
    [Google Scholar]
  57. Vann W. F., Liu T.-Y., Robbins J. B. 1976; Bacillus pumilus polysaccharide cross-reactive with meningococcal group A polysaccharide. Infect Immun 13:1654–1662
    [Google Scholar]
  58. Xu L., Frucht D. M. 2007; Bacillus anthracis : a multi-faceted role for anthrax lethal toxin in thwarting host immune defenses. Int J Biochem Cell Biol 39:20–24 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47754-0
Loading
/content/journal/jmm/10.1099/jmm.0.47754-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error