1887

Abstract

Summary

The frequency of electrophoretic types B (fast mobilities) and B (slow mobilities) of carboxylesterase B, and α-haemolysin and mannose-resistant haemagglutinin (MRHA) production were compared in 705 strains of isolated from cases of septicaemia, urinary tract infection (UTI) and other extra-intestinal infections from different geographical origins, in particular France, America (USA and Canada) and Oceania (Australia and New Zealand). In all groups of strains, whether classified according to their clinical or their geographical origin, electrophoretic type B was phenotypically linked with α-haemolysin and MRHA production. Haemolytic type B strains were isolated more frequently from France and Oceania than America whereas the proportions demonstrating production of MRHA were similar among the three groups. Type B strains were more frequently isolated from UTI and other infections than from septicaemia. This is attributed to the high frequency of immunocompromised subjects in the septicaemia group. Our results establish the suitability of using the type B of carboxylesterase B as a molecular marker for highly pathogenic strains implicated in extra-intestinal infections in man.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-33-1-11
1990-09-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jmm/33/1/medmicro-33-1-11.html?itemId=/content/journal/jmm/10.1099/00222615-33-1-11&mimeType=html&fmt=ahah

References

  1. Duguid JP, Clegg S, Wilson MI. The fimbrial and non-fimbrial haemagglutinins of Escherichia coli. J. Med Microbiol 1979; 12:213–227
    [Google Scholar]
  2. Evans DJ, Evans DG, Young LS, Pitt J. Hemagglutination typing of Escherichia coli: definition of seven hemagglutination types. J Clin Microbiol 1980; 12:235–242
    [Google Scholar]
  3. Archambaud M, Courcoux P, Ouin V, Chabanon G, Labigne-Roussel A. Phenotypic and genotypic assays for the detection and identification of adhesins from pyelonephritic Escherichia coli. Ann Inst Pasteur Microbiol 1988; 139:557–573
    [Google Scholar]
  4. Labigne-Roussel AF, Lark D, Schoolnik G, Falkow S. Cloning and expression of an afimbrial adhesin (AFA- I) responsible for P blood group-independent, mannose-resistant hemagglutination from a pyelonephritic Escherichia coli strain. Infect Immun 1984; 46:251–259
    [Google Scholar]
  5. Vaisanen V, Elo J, Tallgren LG et al. Mannose-resistant haemagglutination and P antigen recognition are characteristic of Escherchia coli causing primary pyelonephritis. Lancet 1981; 2:1366–1369
    [Google Scholar]
  6. Vaisanen-Rhen V, Elo J, Vaisanen E et al. P-fimbriated clones among uropathogenic Escherichia coli strains. Infect Immun 1984; 43:149–155
    [Google Scholar]
  7. Nowicki B, Svanborg-Eden C, Hull R, Hull S. Molecular analysis and epidemiology of the Dr hemagglutinin of uropathogenic Escherichia coli. Infect Immun 1989; 57:446–451
    [Google Scholar]
  8. Reid G, Sobel JD. Bacterial adherence in the pathogenesis of urinary tract infection: a review. Rev Infect Dis 1987; 9:470–487
    [Google Scholar]
  9. Svanborg-Eden C, Hanson LA, Jodal U, Lindberg U, Sohl Akerlund A. Variable adherence to normal human epithelial cells of Escherichia coli strains associated with various forms of urinary-tract infection. Lancet 1976; 2:490–492
    [Google Scholar]
  10. Cavalieri SJ, Bohach GA, Snyder IS. Escherichia coli alpha-hemolysin: characteristics and probable role in pathogenicity. Microbiol Rev 1984; 48:326–343
    [Google Scholar]
  11. Smith H W, Huggins MB. The toxic role of alpha-haemolysin in the pathogenesis of experimental Escherichia coli infection in mice. J Gen Microbiol 1985; 131:395–403
    [Google Scholar]
  12. Welch RA, Dellinger EP, Minshew B, Falkow S. Haemolysin contributes to virulence of extra-intestinal E. coli infections. Nature 1981; 294:665–667
    [Google Scholar]
  13. Berger H, Hacker J, Juarez A, Hughes C, Goebel W. Cloning of the chromosomal determinants encoding hemolysin production and mannose-resistant hemagglutination in Escherichia coli. J Bacteriol 1982; 152:1241–1247
    [Google Scholar]
  14. Low D, David V, Lark D, Schoolnik G, Falkow S. Gene clusters governing the production of hemolysin and mannose-resistant hemagglutination are closely linked in Escherichia coli serotype 04 and 06 isolated from urinary tract infections. Infect Immun 1984; 43:353–358
    [Google Scholar]
  15. Goullet P. An esterase zymogram of Escherichia coli. J Gen Microbiol 1973; 77:27–35
    [Google Scholar]
  16. Goullet P. Esterase electrophoretic pattern relatedness between Shigella species and Escherichia coli. J Gen Microbiol 1980; 117:493–500
    [Google Scholar]
  17. Goullet P. Picard B, Laget PF. Purification and properties of carboxylesterase B of Escherichia coli. Ann Microbiol (Paris) 1984; 135A:375–387
    [Google Scholar]
  18. Goullet P, Picard B. Comparative esterase electrophoretic polymorphism of Escherichia coli isolates obtained from animal and human sources. J Gen Microbiol 1986; 132:1843–1851
    [Google Scholar]
  19. Goullet P, Picard B. Highly pathogenic strains of Escherichia coli revealed by the distinct electrophoretic patterns of carboxylesterase B. J Gen Microbiol 1986; 132:1853–1858
    [Google Scholar]
  20. Picard B, Goullet P. Correlation between electrophoretic types Bt and B2 of carboxylesterase and host-dependent factors in Escherichia coli septicaemia. Epidemiol Infect 1988; 100:51–61
    [Google Scholar]
  21. Picard B, Goullet P. Correlation between electrophoretic types B, and B2 of carboxylesterase B and sex of patients in Escherichia coli urinary tract infections. Epidemiol Infect 1989; 103:97–103
    [Google Scholar]
  22. Kreger BE, Craven DE, Carling PC, McCabe WR. Gram-negative bacteremia. III. Reassessment of etiology, epidemiology and ecology in 612 patients. Am J Med 1980; 68:332–343
    [Google Scholar]
  23. Sobel JD, Kaye D. Urinary tract infections. In: Mandell GL, Douglas RG, Bennett JE. (eds) Principles and practice of infectious diseases, 2nd edn.. New York: John Wiley and Sons; 1985426–451
    [Google Scholar]
  24. Goullet P, Picard B. A two-dimensional electrophoretic profile for bacterial esterases. Electrophoresis 1985; 6:132–135
    [Google Scholar]
  25. Le Minor S, Le Coueffic E. Etude sur les hemolysines des Enterobacteriaceae. Ann Microbiol (Paris) 1975; 126:313–332
    [Google Scholar]
  26. Vosti KL. Relationship of hemagglutination to other biological properties of serologically classified isolates of Escherichia coli. Infect Immun 1979; 25:507–512
    [Google Scholar]
  27. Goullet P, Picard B, Sevali Garcia J. Electrophoretic mobility of an esterase from Escherichia coli isolated from extraintestinal infections. J Infect Dis 1986; 154:727–728
    [Google Scholar]
  28. Goullet P, Picard B. Comparative electrophoretic polymorphism of esterase and other enzymes in Escherichia coli. J Gen Microbiol 1989; 135:135–143
    [Google Scholar]
  29. Selander RK, Caugant DA, Whittam TS. Genetic structure and variation in natural populations of Escherichia coli. In: Neidharat FC et al. (eds) Escherichia coli and Salmonella typhimurium, cellular and molecular biology Washington DC: American Society for Microbiology; 19871625–1648
    [Google Scholar]
  30. Minshew BH, Jorgensen J, Counts GW, Falkow S. Association of hemolysin production, hemagglutination of human erythrocytes, and virulence for chicken embryos of extraintestinal Escherichia coli isolates. Infect Immun 1978; 20:50–54
    [Google Scholar]
  31. Achtman M, Pluschke G. Clonal analysis of descent and virulence among selected Escherichia coli. Annu Rev Microbiol 1986; 40:185–210
    [Google Scholar]
  32. Evans DJ, Evans DG, Hohne C et al. Hemolysin and K antigens in relation to serotype and hemagglutination type of Escherichia coli isolated from extraintestinal infections. J Clin Microbiol 1981; 13:171–178
    [Google Scholar]
  33. O’Hanley P, Low D, Romero I et al. Gal-gal binding and hemolysin phenotypes and genotypes associated with uropathogenic Escherichia coli. N Engl J Med 1985; 313:414–420
    [Google Scholar]
  34. Orskov I, Orskov F. Escherichia coli in extra-intestinal infections. J Hyg (Lond) 1985; 95:551–575
    [Google Scholar]
  35. Selander RK, Korhonen TK, Vaisanen-Rhen V, Williams PH, Pattison PE, Caugant DA. Genetic relationships and clonal structure of strains of Escherichia coli causing neonatal septicemia and meningitis. Infect Immun 1986; 52:213–222
    [Google Scholar]
  36. Achtman M, Mercer A, Kusecek B et al. Six widespread bacterial clones among Escherichia coli K1 isolates. Infect Immun 1983; 39:315–335
    [Google Scholar]
  37. Achtman M, Heuzenroeder M, Kusecek B et al. Clonal analysis of Escherichia coli 02:K1 isolated from diseased humans and animals. Infect Immun 1986; 51:268–276
    [Google Scholar]
  38. Korhonen TK, Valtonen MV, Parkkinen J et al. Serotypes, hemolysin production, and receptor recognition of Escherichia coli strains associated with neonatal sepsis and meningitis. Infect Immun 1985; 48:486–491
    [Google Scholar]
  39. Westerlund B, Siitonen A, Elo J, Williams PH, Korhonen TK, Makela PH. Properties of Escherichia coli isolates from urinary tract infections in boys. J Infect Dis 1988; 158:996–1002
    [Google Scholar]
  40. Johnson JR, Roberts PL, Stamm WE. P fimbriae and other virulence factors in E. coli urosepsis: association with patients, characteristics. J Infect Dis 1987; 156:225–229
    [Google Scholar]
  41. Johnson JR, Moseley SL, Roberts PL, Stamm WE. Aerobactin and other virulence factor genes among strains of Escherichia coli causing urosepsis: association with patient characteristics. Infect Immun 1988; 56:405–412
    [Google Scholar]
  42. Nicaud JM, Mackman N, Gray L, Holland IB. Characterization of HlyC and mechanism of activation and secretion of haemolysin from E. coli 2001. Febs Lett 1985; 187:339–344
    [Google Scholar]
  43. Ludwig A, Vogel M, Goebel W. Mutations affecting activity and transport of haemolysin in Escherichia coli. Mol Gen Genet 1987; 206:238–245
    [Google Scholar]
  44. Oropeza-wekerle RL, Muller E, Kern P, Meyermann R, Goebel W. Synthesis, inactivation and localization of extracellular and intracellular Escherichia coli hemolysins. J Bacterial 1989; 171:2783–2788
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-33-1-11
Loading
/content/journal/jmm/10.1099/00222615-33-1-11
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error