1887

Abstract

Summary

The capacity of 11 strains of oral streptococcal species and ) to produce hydrogen peroxide (HO) was studied . Detection of this property in solid media, particularly with trypticase soy agar-benzidine-peroxidase, was more sensitive than in liquid media. The addition of carbohydrates (arabinose, xylose, mannose, sorbose and lactose), sorbitol and saccharine to buffered trypticase soy broth increased HO production in NCTC 11427, although the concentrations obtained with some substrates (glucose, galactose, mannitol and xylitol) were lower than those obtained in controls. In NCTC 7863, HO production was detected only with galactose, sorbitol, lactose and saccharin.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-39-6-434
1993-12-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jmm/39/6/medmicro-39-6-434.html?itemId=/content/journal/jmm/10.1099/00222615-39-6-434&mimeType=html&fmt=ahah

References

  1. Holmberg K, Hallander HO. Production of bactericidal con centrations of hydrogen peroxide by Streptococcus sanguis. Arch Oral Biol 1973; 18:423–434
    [Google Scholar]
  2. LeBien TW, Bromel MC. Antibacterial properties of a per-oxidogenic strain of Streptococcus mitior (mitis). Can J Microbiol 1975; 21:101–103
    [Google Scholar]
  3. Vernazza TR, Melville TH. Inhibitory activity of Streptococcus mitis against oral bacteria. Microbios 1979; 26:95–101
    [Google Scholar]
  4. Willcox MDP, Drucker DB. Partial characterisation of the inhibitory substances produced by Streptococcus oralis and related species. Microbios 1988; 55:135–145
    [Google Scholar]
  5. McLeod JW, Gordon J. Production of hydrogen peroxide by bacteria. Biochem J 1922; 16:499–504
    [Google Scholar]
  6. Thompson R, Johnson A. The inhibitory action of saliva on the diphtheria bacillus: hydrogen peroxide, the inhibitory agent produced by salivary streptococci. J Infect Dis 1951; 88:81–85
    [Google Scholar]
  7. Hamon CB, Klebanoff SJ. A peroxidase-mediated, Streptococcus m/to-dependent antimicrobial system in saliva. J Exp Med 1973; 137:438–450
    [Google Scholar]
  8. Fridovich I. Superoxide dismutases. Annu Rev Biochem 1975; 44:147–159
    [Google Scholar]
  9. Dingman DW, Stalhy DP. Protection of Bacillus larvae from oxygen toxicity with emphasis on the role of catalase. Appl Environ Microbiol 1984; 47:1228–1237
    [Google Scholar]
  10. Edwardsson S. Microorganimos asociados a la caries dental. In: Thylstrup A, Fejerskov O. (eds) Caries Barcelona: Ediciones Doyma; 198885
    [Google Scholar]
  11. Cole JA. A biochemical approach to the control of dental caries. Biochem Soc Trans 1977; 5:1232–1239
    [Google Scholar]
  12. Dolin MI. Cytochrome-independent electron transport enzymes of bacteria. In: Gunsalus IC, Stanier RY. (eds) The bacteria, vol 2 New York: Academic Press; 1961425
    [Google Scholar]
  13. Thomas EL, Pera KA. Oxygen metabolism of Streptococcus mutans: uptake of oxygen and release of superoxide and hydrogen peroxide. J Bacteriol 1983; 154:1236–1244
    [Google Scholar]
  14. DiGuiseppi J, Fridovich I. Oxygen toxicity in Streptococcus sanguis. The relative importance of superoxide and hydroxyl radicals. J Biol Chem 1982; 257:4046–4051
    [Google Scholar]
  15. Dolin MI. The DPNH-oxidizing enzymes of Streptococcus faecalis. II. The enzymes utilizing oxygen, cytochrome c, peroxide and 2,6-dichlorophenol-indophenol or ferricyan- ide as oxidants. Arch Biochem Biophys 1955; 55:415–435
    [Google Scholar]
  16. Hardie JM. Oral streptococci. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG. (eds) Bergey’s Manual of systematic bacteriology, 9th ed, vol 2 Baltimore: Williams and Wilkins Co.; 19861054–1063
    [Google Scholar]
  17. Loesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev 1986; 50:353–380
    [Google Scholar]
  18. Garcia-Villanova R. (ed). Volumetrfas de oxido-reduccion. In: Analisis qui'mico. Principios y metodos, 2nd edn. Granada: Universidad de Granada; 1980347
    [Google Scholar]
  19. Lehninger AL. Enzimas de oxido-reduccion y transporte electronico. In: Lehninger AL. (ed) Bioqufmica, 2nd edn. Barcelona: Ediciones Omega; 1978487
    [Google Scholar]
  20. Levine IN. (ed). Espectroscopfa y fotoqufmica. In: Physico-chemistry Bogota: McGraw Hill; 1981472
    [Google Scholar]
  21. Calvo F. (ed). Estadistica aplicada Bilbao: Deusto; 1978596
    [Google Scholar]
  22. Hamada S, Slade HD. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev 1980; 44:331–384
    [Google Scholar]
  23. Whiley RA, Fraser H, Hardie JM, Beighton D. Phenotypic differentiation of Streptococcus intermedius, Streptococcus constellatus, and Streptococcus anginosus strain within the “Streptococcus milleri Group”. J Clin Microbiol 1990; 28:1497–1501
    [Google Scholar]
  24. Whittenbury R. Hydrogen peroxide formation and catalase activity in lactic acid bacteria. J Gen Microbiol 1964; 35:13–26
    [Google Scholar]
  25. Carlsson J, Iwami Y, Yamada T. Hydrogen peroxide excretion by oral streptococci and effect of lactoperoxidase- thiocyanate-hydrogen peroxide. Infect Immun 1983; 40:70–80
    [Google Scholar]
  26. Thylstrup A, Fejerskov O. (eds) Actividades metabolicas de las bacterias de la cavidad oral. In: Caries Barcelona: Ediciones Doyma; 198856
    [Google Scholar]
  27. Carlsson J, Edlund M-BK, Lundmark SKE. Characteristics of a hydrogen peroxide-forming pyruvate oxidase from Streptococcus sanguis. Oral Microbiol Immunol 1987; 2:15–20
    [Google Scholar]
  28. Low IE, Zimkus SM. Reduced nicotinamide adenine dinucleo tide oxidase and H202 formation of Mycoplasma pneumoniae. J Bacteriol 1973; 116:346–354
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-39-6-434
Loading
/content/journal/jmm/10.1099/00222615-39-6-434
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error