1887

Abstract

Summary

The intra-species differentiation of was analysed by comparing the polymorphism of esterases by conventional polyacrylamide-agarose gel electrophoresis, the physicochemical properties of the variants of the major esterase P and the restriction fragment length polymorphism of ribosomal RNA gene regions (ribotyping) to O-serotyping for several panels of strains selected from among a series of 257 clinical isolates and two references strains, (ATCC nos. 10145 and 27853). The electrophoretic variation of four main kinds of esterase (P–P) and 11 additional esterases distinguished by their spectra of hydrolytic activity with synthetic substrates and by their sensitivity to di-isopropyl-fluorophosphate, allowed the discrimination of 67 zymotypes. Thirty-two esterase P variants were characterised by their pi, electrophoretic mobilities and titration curve analyses. They were distributed into two groups which, by these molecular criteria, seem to be distantly related. Combination of the patterns resulting from dII, RI and I restriction endonuclease digestions allowed the discrimination of 33 ribotypes among 134 strains. The strains exhibiting esterase P variants of group 2 presented a distinct ribotype and belonged to serotype O12. They could constitute a distinct group within the species. For the majority of the strains, the absence of correlation between zymotype, ribotype and serotype argues for a high level of heterogeneity within and indicates that the parallel use of the first two methods represent a potential tool for epidemiological study.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-40-5-313
1994-05-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/40/5/medmicro-40-5-313.html?itemId=/content/journal/jmm/10.1099/00222615-40-5-313&mimeType=html&fmt=ahah

References

  1. Picard B, Goullet P, Bouvet PJM, Decoux G, Denis JB. Characterization of bacterial genospecies by computer-assisted statistical analysis of enzyme electrophoretic data. Electrophoresis 1989; 10:680–685
    [Google Scholar]
  2. Selander RK, Caugant DA, Ochman H, Musser JM, Gilmour MN, Whittam TS. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appi Environ Microbiol 1986; 51:873–884
    [Google Scholar]
  3. Goullet P, Picard B. A two-dimensional electrophoretic profile for bacterial esterases. Electrophoresis 1985; 6:132–135
    [Google Scholar]
  4. Righetti PG, Krishnamoorthy R, Gianazza E, Labie D. Protein titration curves by combined isoelectric focusing-electrophoresis with hemoglobin mutants as models. J Chromatogr 1978; 166:455–460
    [Google Scholar]
  5. Goullet P, Picard B, Krishnamoorthy R. An evaluation of allozyme amino acid substitutions for the study of molecular relationships in Providencia strains. Ann Inst Pasteur/Microbiol 1988; 139:689–702
    [Google Scholar]
  6. Picard B, Goullet P, Krishnamoorthy R. A novel approach to study of the structural basis of enzyme polymorphism. Analysis of carboxylesterase B of Escherichia coli as model. Biochem J 1987; 241:877–881
    [Google Scholar]
  7. Nei M, Li W-H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Nati AcadSci USA 1979; 76:5269–5273
    [Google Scholar]
  8. Grimont F, Grimont PAD. Ribosomal ribonucleic acid gene restriction patterns as potential taxonomic tools. Ann Inst Pasteur/Microbiol 1986; 137B:165–175
    [Google Scholar]
  9. Picard-Pasquier N, Ouagued M, Picard B, Goullet P, Krishna-moorthy R. A simple, sensitive method of analyzing bacterial ribosomal DNA polymorphism. Electrophoresis 1989; 10:186–189
    [Google Scholar]
  10. Stull TL, LiPuma JJ, Edlind TD. A broad-spectrum probe for molecular epidemiology of bacteria: ribosomal RNA. J Infect Dis 1988; 157:280–286
    [Google Scholar]
  11. Arthur M, Arbeit RD, Kim C. Restriction fragment length polymorphisms among uropathogenic Escherichia coli isolates : pap-related sequences compared with rrn operons. Infect Immun 1990; 58:471–479
    [Google Scholar]
  12. Denny TP, Gilmour MN, Selander RK. Genetic diversity and relationships of two pathovars of Pseudomonas syringae . J Gen Microbiol 1988; 134:1949–1960
    [Google Scholar]
  13. Picard-Pasquier N, Picard B, Heeralal S, Krishnamoorthy R, Goullet P. Correlation between ribosomal DNA polymorphism and electrophoretic enzyme polymorphism in Yersinia . J Gen Microbiol 1990; 136:1655–1666
    [Google Scholar]
  14. Goullet P, Picard B. Pseudomonas aeruginosa isolate typing by esterase electrophoresis. FEMS Microbiol Lett 1991; 78:195–200
    [Google Scholar]
  15. Denamur E, Picard B, Goullet P, Bingen E, Lambert N, Elion J. Complexity of Pseudomonas aeruginosa infection in cystic fibrosis: combined results from esterase electrophoresis and rDNA restriction fragment length polymorphism analysis. Epidemiol Infect 1991; 106:531–539
    [Google Scholar]
  16. Liu PV, Matsumoto H, Kusama H, Bergan T. Survey of heat- stable, major somatic antigens of Pseudomonas aeruginosa . Ini J Syst Bacteriol 1983; 33:256–264
    [Google Scholar]
  17. Lennox ES. Transduction of linked genetic characters of the host by bacteriophage PI. Virology 1955; 1:190–206
    [Google Scholar]
  18. Goullet P. An esterase zymogram of Escherichia coli . J Gen Microbiol 1973; 77:27–35
    [Google Scholar]
  19. Uriel J. Méthode d’électrophorèse dans des gels d’acrylamide- agarose. Bull Soc Chim Biol 1966; 48:969–982
    [Google Scholar]
  20. Vesterberg O, Svensson H. Isoelectric fractionation analysis and characterization of ampholytes in natural pH gradients. IV. Further studies on the resolving power in connection with separation of myoglobins. Acta Chem Scand 1966; 20:820–834
    [Google Scholar]
  21. Lawrence SH, Melnick PJ, Weimer HE. A species comparison of serum proteins and enzymes by starch gel electro-phoresis. Proc Soc Exp Biol Med 1960; 105:572–575
    [Google Scholar]
  22. Uriel J. Caractérisation des cholinestérases et d’autres estérases carboxyliques après électrophorèse et immunoélectro-phorèse en gelose. 1. application à l’étude des estérases du sérum humain normal. Ann Inst Pasteur 1961; 101:104–119
    [Google Scholar]
  23. Southern EM. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 1975; 98:503–517
    [Google Scholar]
  24. Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 1978; 89:583–590
    [Google Scholar]
  25. Ochman H, Whittam TS, Caugant DA, Selander RK. Enzyme polymorphism and genetic population structure in Escheri-chia coli and Shigella . J Gen Microbiol 1983; 129:2715–2726
    [Google Scholar]
  26. Selander RK. Protein polymorphism and the genetic structure of natural populations of bacteria. Onta T, Aoki K. Population genetics and molecular evolution Berlin: Springer-Verlag; 198585–106
    [Google Scholar]
  27. Selander RK, Caugant DA, Whittam TS. Genetic structure and variation in natural populations of Escherichia coli . Ingraham JL. Escherichia coli and Salmonella typhimurium, cellular and molecular biology Washington, D.C.: American Society for Microbiology; 19871625–1648
    [Google Scholar]
  28. Pitt TL. Epidemiological typing of Pseudomonas aeruginosa . Eur J Clin Microbiol Infect Dis 1988; 7:238–247
    [Google Scholar]
  29. Pitt TL, Livermore DM, Pitcher D, Vatopoulos AC, Legakis NJ. Multiresistant serotype 012 Pseudomonas aeruginosa: evidence for a common strain in Europe. Epidemiol Infect 1989; 103:565–576
    [Google Scholar]
  30. Picard B, Goullet P. Epidemiological complexity of hospital Aeromonas infections revealed by electrophoretic typing of estérases. Epidemiol Infect 1987; 98:5–14
    [Google Scholar]
  31. Picard B, Bruneau B, Goullet P. Demonstration of an outbreak oiSerratia marcescens infections in a medical intensive care unit by esterase electrophoretic typing. J Hosp Infect 1988; 11:194–195
    [Google Scholar]
  32. Griffith SJ, Nathan C, Selander RK. The epidemiology of Pseudomonas aeruginosa in oncology patients in a general hospital. J Infect Dis 1989; 160:1030–1036
    [Google Scholar]
  33. Speert DP, Campbell ME, Farmer SW, Volpel K, Jofte AM, Paranchych W. Use of a pilin gene probe to study molecular epidemiology of Pseudomonas aeruginosa . J Clin Microbiol 1989; 27:2589–2593
    [Google Scholar]
  34. Denamur E, Picard-Pasquier N, Mura C, Picard B, Orfila J, Krishnamoorthy R. Comparison of molecular epidemiological tools for Branhamella catarrhalis typing. Res Microbiol 1991; 142:585–589
    [Google Scholar]
  35. Grothues D, Koopmann U, Von Der Hardt H, Tiimmler B. Genome fingerprinting of Pseudomonas aeruginosa indicates colonization of cystic fibrosis siblings with closely related strains. J Clin Microbiol 1988; 26:1973–1977
    [Google Scholar]
  36. Ogle JW, Janda JM, Woods DE, Vasil ML. Characterization and use of a DNA probe as an epidemiological marker for Pseudomonas aeruginosa . J Infect Dis 1987; 155:119–126
    [Google Scholar]
  37. Pasloske BL, Joffe AM, Sun Q. Serial isolates of Pseudomonas aeruginosa from a cystic fibrosis patient have identical pilin sequences. Infect Immun 1988; 56:665–672
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-40-5-313
Loading
/content/journal/jmm/10.1099/00222615-40-5-313
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error