1887

Abstract

Summary

isolates that require arginine—i.e., either citrulline (C), or ornithine (O)—uracil (U) and hypoxanthine (H) have generally been considered to be similar when characterised by auxotype, serovar and plasmid content. The MICs of penicillin, tetracycline, erythromycin, spectinomycin, cefoxitin and ceftriaxone for 552 isolates belonging to serovar IA-2 with these phenotypes were found to be similar. Therefore, restriction fragment length polymorphism analysis of rRNA genes (ribotyping), restriction enzyme (RE) analysis of chromosomal DNA, and pulsed-field gel electrophoresis (PFGE) were evaluated to determine whether these isolates could be distinguished by molecular methods. A subset of 27 isolates of that were OUH-requiring, CUH-requiring or OH-requiring, belonged to serovar IA-2 and carried a 2.6-MDa plasmid, were selected for further study. Based on the RE analysis of I-digested genomic DNA, the 27 isolates fell into a single RE pattern, five ribotypes and 17 PFGE profiles which did not correlate with the specific arginine-requiring subtypes of these isolates. Each ribotype varied by the presence of only a single fragment, which was of a different size in each pattern, and 17 (63%) of the 27 isolates belonged to ribotype I. PFGE yielded the highest level of discrimination with 17 different profiles.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-43-3-208
1995-09-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/43/3/medmicro-43-3-208.html?itemId=/content/journal/jmm/10.1099/00222615-43-3-208&mimeType=html&fmt=ahah

References

  1. Catlin B. W. Nutritional profiles of Neisseria gonorrhoeae, Neisseria meningitidis and Neisseria lactamica in chemically defined media and the use of growth requirements for gonococcal typing. J Infect Dis 1973; 128:178–194
    [Google Scholar]
  2. Picard F. J., Dillon J. R. Biochemical and genetic studies with arginine and proline auxotrophs of Neisseria gonorrhoeae. Can J Microbiol 1989; 35:1069–1075
    [Google Scholar]
  3. Catlin B. W., Nash E. H. Arginine biosynthesis in gonococci isolated from patients. In Brooks G. F., Gotschlich E. C., Holmes K. K., Sawyer W. D., Young F. E. (eds) Immunobiology of Neisseria gonorrhoeae Washington, DC: American Society for Microbiology; 19781–8
    [Google Scholar]
  4. Eisenstein B. I., Lee I. T. J., Sparling P. F. Penicillin sensitivity and serum resistance are independent attributes of strains of Neisseria gonorrhoeae causing disseminated gonococcal infections. Infect Immun 1977; 15:834–841
    [Google Scholar]
  5. Schoolnik G. K., Buchanan T. M., Holmes K. K. Gonococci causing disseminated gonococcal infection are resistant to the bactericidal action of normal human sera. J Clin Invest 1976; 58:1163–1173
    [Google Scholar]
  6. Dillon J. R., Bygdeman S. M., Sandstrom E. G. Serological ecology of Neisseria gonorrhoeae (PPNG and non-PPNG) strains: Canadian perspective. Genitourin Med 1987; 63:160–168
    [Google Scholar]
  7. Dillon J. R., Rahman M., Yeung K.-H. Discriminatory power of typing schemes based on Simpson’s index of diversity for Neisseria gonorrhoeae. j Clin Microbiol 1993; 31:2831–2833
    [Google Scholar]
  8. Falk E. S., Bjorvatn B., Danielsson D., Kristiansen B. E., Melby K., Sorensen B. Restriction endonuclease fingerprinting of chromosomal DNA of Neisseria gonorrhoeae. Acta Pathol Microbiol Immunol Scand Sect B 1984; 92:271–278
    [Google Scholar]
  9. Poh C. L., Ocampo J. C., Sng E. H., Bygdeman S. M. Rapid in-situ generation of DNA restriction endonuclease patterns for Neisseria gonorrhoeae. J Clin Microbiol 1989; 27:2784–2788
    [Google Scholar]
  10. Ng L. K., Dillon J. R. Typing by serovar, antibiogram, plasmid content, riboprobing, and isoenzyme typing to determine whether Neisseria gonorrhoeae isolates requiring proline, citrulline, and uracil for growth are clonal. J Clin Microbiol 1993; 31:1555–1561
    [Google Scholar]
  11. Poh C. L., Khng H. P., Lim C. K., Loh G. K. Molecular typing of Neisseria gonorrhoeae by restriction fragment length polymorphisms. Genitourin Med 1992; 68:106–110
    [Google Scholar]
  12. O’Rourke M., Spratt B. G. Further evidence for the non-clonal population structure of Neisseria gonorrhoeae: extensive genetic diversity within isolates of the same electrophoretic type. Microbiol 1994; 140:1285–1290
    [Google Scholar]
  13. Dillon J. R., Li H. Comparison of pulsed field gel electrophoresis to ribotyping for discriminating between isolates of Neisseria gonorrhoeae of auxotype/serovar classes NR/IA-5 and A/IA-2, abstr. 229. Abstracts of the 10th International Meeting of the International Society for STD Research Helsinki, Finland: 1993229
    [Google Scholar]
  14. Poh C. L., Lau Q. C. Subtyping of Neisseria gonorrhoeae auxotype-serovar groups by pulsed-field gel electrophoresis. J Med Microbiol 1993; 38:366–370
    [Google Scholar]
  15. Dillon J. R. Laboratory methods for Neisseria gonorrhoeae. Publication H47-58/1983E Ottawa, Ontario, Canada: Health and Welfare Canada; 1983
    [Google Scholar]
  16. Dillon J. R., Carballo M., King S. D., Brathwaite A. R. Auxotypes, plasmid contents, and serovars of gonococcal strains (PPNG and non-PPNG) from Jamaica. Genitourin Med 1987; 63:233–238
    [Google Scholar]
  17. Brosius J., Ullrich A., Raker M. A. Construction and fine mapping of recombinant plasmids containing the rrnB ribosomal RNA operon of E. coli. Plasmid 1981; 6:112–118
    [Google Scholar]
  18. Hendry A. T., Stewart I. O. Auxanographic grouping and typing ofNeisseria gonorrhoeae. Can J Microbiol 1979; 25:512–521
    [Google Scholar]
  19. Knapp J. S., Tam M. R., Nowinski R. C., Holmes K. K., Sandstrom E. G. Serological classification of Neisseria gonorrhoeae with use of monoclonal antibodies to gonococcal outer membrane protein I. J Infect Dis 1984; 150:44–48
    [Google Scholar]
  20. Dillon J. R., Pauze M. Relationship between plasmid content and auxotype in Neisseria gonorrhoeae isolates. Infect Immun 1981; 33:625–628
    [Google Scholar]
  21. National Committee for Clinical Laboratory Standards Approved standard M7-A2. Standard methods for dilution antimicrobial tests with bacteria that grow aerobically. 2nd edn Villanova, PA: National Committee for Clinical Laboratory Standards; 1990
    [Google Scholar]
  22. Dillon J. R., Nasim A., Nestmann E. R. (eds) Recombinant DNA methodology New York: John Wiley and Sons; 1985
    [Google Scholar]
  23. Feinberg A. P., Vogelstein B. Addendum: “A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity.”. Anal Biochem 1984; 137:266–267
    [Google Scholar]
  24. Chomczynski P., Qasba P. K. Alkaline transfer of DNA to plastic membrane. Biochem Biophys Res Comm 1984; 122:340–344
    [Google Scholar]
  25. Sambrook J., Fritsch E. F., Maniatis T. (eds) Molecular cloning: a laboratory manual. 2nd edn Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 1989
    [Google Scholar]
  26. Chang N., Taylor D. E. Use of pulsed-field agarose gel electrophoresis to size genomes of Campylobacter species and to construct a Sal I map of Campylobacter jejuni UA 580. J Bacteriol 1990; 172:5211–5217
    [Google Scholar]
  27. Bihimaier A., Romling U., Meyer T. F., Tummler B., Gibbs C. P. Physical and genetic map of the Neisseria gonorrhoeae strain MS11-N198 chromosome. Mol Microbiol 1991; 5:2529–2539
    [Google Scholar]
  28. Dempsey J. A. F., Litaker W., Madhure A., Snodgrass T. L., Cannon J. G. Physical map of the chromosome of Neisseria gonorrhoeae FA 1090 with locations of genetic markers, including opa and pil genes. J Bacteriol 1991; 173:5476–5486
    [Google Scholar]
  29. Danielsson D., Bygdeman S., Kallings I. Epidemiology of gonorrhoea: serogroup, antibiotic susceptibility and auxotype patterns of consecutive gonococcal isolates from ten different areas of Sweden. Scand J Infect Dis 1983; 15:33–42
    [Google Scholar]
  30. Falk E. S., Danielsson D., Bjorvatn B., Melby K., Sorensen B., Kristiansen B. E. Genomic fingerprinting in the epidemiology of gonorrhoeae. Acta Dermatol Venereol 1985; 65:235–239
    [Google Scholar]
  31. Falk E. S., Danielsson D., Bjorvatn B. Phenotypic and genotypic characterization of penicillinase-producing strains of Neisseria gonorrhoeae. Acta Pathol Microbiol Immunol Scand Sect B 1985; 93:91–97
    [Google Scholar]
  32. Owen R. J. Chromosomal DNA fingerprinting–a new method of species and strain identification applicable to microbial pathogens. J Med Microbiol 1989; 30:89–99
    [Google Scholar]
  33. Bingen E. H., Denamur E., Elion J. Use of ribotyping in epidemiological surveillance of nosocomial outbreaks. Clin Microbiol Rev 1994; 7:311–327
    [Google Scholar]
  34. 34. Li H. MSc Thesis, 1993 Evaluation of molecular typing methods to discriminate between isolates of Neisseria gonorrhoeae, restriction endonuclease analysis, ribotyping and pulsed field gel electrophoresis. University of Ottawa; Ottawa, Ontario, Canada:
    [Google Scholar]
  35. 35. Allerdet-Servent A., Bouziges N., Carles-Nurit M. J., Boung G., Gouby A., Ramuz M. Use of low-frequency-cleavage restriction endonucleases for DNA analysis in epidemiological investigations of nosocomial bacterial infections. J Clin Microbiol 1989; 27:2057–2061
    [Google Scholar]
  36. 36. Anderson D. J., Kuhns J. S., Vasil M. L., Gerding D. N., Janoff E. N. DNA fingerprinting by pulsed field gel electrophoresis and ribotyping to distinguish Pseudomonas cepacia isolates from a nosocomial outbreak. J Clin Microbiol 1991; 29:648–649
    [Google Scholar]
  37. Murray B. E., Singh K. V., Heath J. D., Sharma B. R., Weinstock G. M. Comparison of genomic DNAs of different enterococcal isolates using restriction endonucleases with infrequent recognition sites. J Clin Microbiol 1990; 28:2059–2063
    [Google Scholar]
  38. Ott M., Bender L., Marre R., Hacker J. Pulsed field electrophoresis of genomic restriction fragments for the detection of nosocomial Legionella pneumophila in hospital water supplies. J Clin Microbiol 1991; 29:813–815
    [Google Scholar]
  39. Xia M., Whittington W. L., Knapp J. S., Holmes K. K., Roberts M. C. Epidemiologic analysis of Neisseria gonorrhoeae by pulsed-field gel electrophoresis. Proceedings of the Ninth International Pathogenic Neisseria Conference 1994 Abstract p 411
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-43-3-208
Loading
/content/journal/jmm/10.1099/00222615-43-3-208
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error