1887

Abstract

The general characteristics and genetics of insertion sequence (IS) elements are well-established. For IS elements, mechanisms of transposition and mutation are known and their recombinogenic role in the bacterial genome has been investigated. Population models relate the distribution of these IS elements to autoregulation of their transposition. IS, the smallest known element, is confined to the salmonellae and several lineages of . It exhibits atypical molecular features. The population dynamics of IS make it particularly effective marker of chromosomal genotype in many serovars. Molecular epidemiological typing with IS has been developed for important serovars in groups D1, C1, C2 and B. Findings for . Enteritidis, . Panama, . Infantis, . Typhimurium, . Heidelberg, . Paratyphi B and . Java are reviewed. Of the 12 IS elements found in mycobacteria, IS, found in and , exhibits the greatest potential for molecular epidemiological applications. Although is a single serogroup, and its genome is otherwise highly homogeneous, strains are highly polymorphic with respect to copy number and location of IS. A standard IS typing method has been established, together with novel PCR-based approaches to IS fingerprinting.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-45-4-236
1996-10-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/45/4/medmicro-45-4-236.html?itemId=/content/journal/jmm/10.1099/00222615-45-4-236&mimeType=html&fmt=ahah

References

  1. Chandler M., Fayet O. Translational frameshifting in the control of transposition in bacteria. Mol Microbiol 1993; 7:497–503
    [Google Scholar]
  2. Wood M. S., Byrne A., Lessie T. G. IS406 and IS407, two geneactivating insertion sequences for Pseudomonas cepacia. Gene 1991; 105:101–105
    [Google Scholar]
  3. Byrne A.M., Lessie T.G. Characteristics of IS401, a new member of the IS5 family implicated in plasmid rearrangements in Pseudomonas cepacia. Plasmid 1994; 31:138–147
    [Google Scholar]
  4. Ouahrani S., Michaux S., Sri Widada J. Identification and sequence analysis of IS6507, an insertion sequence in Brucella spp.: relationship between genomic structure and the number of IS6501 copies. J Gen Microbiol 1993; 139:3265–3273
    [Google Scholar]
  5. van der Zee A., Agterberg C., van Agterveld M., Peeters M., Mooi F. R. Characterization of IS 1001, an insertion sequence element of Bordetella parapertussis. J Bacteriol 1993; 175:141–147
    [Google Scholar]
  6. Thorisdottir A. S., Carias L. L., Marshall S. H. IS6770, an enterococcal insertion-like sequence useful for determining the clonal relationship of clinical enterococcal isolates. J Infect Dis 1994; 170:1539–1548
    [Google Scholar]
  7. Knight A. L., Ni H., Cartwright K. A. V., McFadden J. J. Identification and characterization of a novel insertion sequence, IS1106, downstream of the porA gene in B15 Neisseria meningitidis. Mol Microbiol 1992; 6:1565–1573
    [Google Scholar]
  8. Kropinski A. M., Farinha M. A., Jansons I. Nucleotide sequence of the Pseudomonas aeruginosa insertion sequence IS222: another member of the ISJ family. Plasmid 1994; 31:222–228
    [Google Scholar]
  9. Lyon B. R., Gillespie M. T., Skurray R. A. Detection and characterization of IS256, an insertion sequence in Staphylococcus aureus. J Gen Microbiol 1987; 133:3031–3038
    [Google Scholar]
  10. Debrise A., Dyke K. G., El Solh N. Isolation and characterization of IS1181, an insertion sequence from Staphylococcus aureus. Plasmid 1994; 31:251–264
    [Google Scholar]
  11. Kapur V., Reda K. B., Li L. L., Rich R. R., Musser J. M. Characterization and distribution of insertion sequence IS239 in Streptococcus pyogenes. Gene 1994; 150:135–140
    [Google Scholar]
  12. Morona J. K., Guidolin A., Morona R., Hansman D., Paton J. C. Isolation, characterization, and nucleotide sequence of IS1202, an insertion sequence of Streptococcus pneumoniae. J Bacteriol 1994; 176:4437–4443
    [Google Scholar]
  13. Podladchikova O. N., Dikhanov G. G., Rakin A. V., Heesemann J. Nucleotide sequence and structural organization of Yersinia pestis insertion sequence ISI00. FEMS Microbiol Lett 1994; 121:269–274
    [Google Scholar]
  14. Jordan E., Saedler H., Starlinger P. 0-zero and strong-polar mutations in the gal operon are insertions. Mol Gen Genet 1968; 102:353–363
    [Google Scholar]
  15. Shapiro J. A. Mutations caused by the insertion of genetic material into the galactose operon of Escherichia coli. J Mol Biol 1969; 40:93–105
    [Google Scholar]
  16. Hirsch H-J, Starlinger P., Brachet P. Two kinds of insertions in bacterial genes. Mol Gen Genet 1972; 119:191–206
    [Google Scholar]
  17. McClintock B. Chromosome organization and gene expression. Cold Spring Harbor Symp Quant Biol 1951; 16:13–47
    [Google Scholar]
  18. Eisen J. A., Benito M. I., Walbot V. Sequence similarity of putative transposases links the maize Mutator autonomous element and a group of bacterial insertion sequences. Nucleic Acids Res 1994; 22:2634–2636
    [Google Scholar]
  19. Besemer J., Herpers M. Suppression of polarity of insertion mutations within the gal operon of E. coli. Mol Gen Genet 1977; 151:295–304
    [Google Scholar]
  20. Saedler H., Reif H. J., Hu S., Davidson N. IS2, a genetic element for turn-off and turn-on of genetic activity in E. coli. Mol Gen Genet 1974; 132:265–289
    [Google Scholar]
  21. Reynolds A. E., Felton J., Wright A. Insertion of DNA activates the cryptic bgl operon in E. coli K12. Nature 1981; 293:625–629
    [Google Scholar]
  22. Green L., Miller R. D., Dykhuizen D. E., Hartl D. L. Distribution of DNA insertion element IS5 in natural isolates of Escherichia coli. Proc Natl Acad Sci USA 1984; 81:4500–4504
    [Google Scholar]
  23. Naas T., Blot M., Fitch W.M., Arber W. Dynamics of IS-related genetic rearrangements in resting Escherichia coli K12. Mol Biol Evol 1995; 12:198–207
    [Google Scholar]
  24. Datta N., Hughes V. M. Plasmids of the same Inc groups in Enterobacteria before and after the medical use of antibiotics. Nature 1983; 306:616–617
    [Google Scholar]
  25. Garcia M-I, Labigne A., Le Bougenec C. Nucleotide sequence of the afimbrial-adhesin-encoding afa-3 gene cluster and its translocation via flanking IS7 insertion sequences. J Bacteriol 1994; 176:7601–7613
    [Google Scholar]
  26. Ohtsubo H., Nyman K., Doroszkiewicz W., Ohtsubo E. Multiple copies of iso-insertion sequences of IS/ in Shigella dysenteriae chromosome. Nature 1981; 292:640–643
    [Google Scholar]
  27. Ochman H., Selander R. K. Standard reference strains of Escherichia coli from natural populations. J Bacteriol 1984; 157:690–693
    [Google Scholar]
  28. Ajioka J., Hartl D. L. Population dynamics of transposable elements. In Berg D. E., Howe M. M. (eds) Mobile DNA Washington D. C: ASM Publications; 1989939–958
    [Google Scholar]
  29. Sawyer S. A., Hartl D. L. Distribution of transposable elements in prokaryotes. Theor Popul Biol 1986; 30:1–17
    [Google Scholar]
  30. Egner C., Berg D. E. Excision of transposon Tn5 is dependent on the inverted repeats but not on the transposase function of Tn5. Proc Natl Acad Sci USA 1981; 78:459–463
    [Google Scholar]
  31. Sawyer S. A., Dykhuizen D. E., DuBose R. F. Distribution and abundance of insertion sequences among natural isolates of Escherichia coli. Genetics 1987; 115:51–63
    [Google Scholar]
  32. Lam S., Roth J. R. IS200: a Salmonella-specific insertion sequence. Cell 1983; 34:951–960
    [Google Scholar]
  33. Lam S., Roth J. R. Genetic mapping of IS200 copies in Salmonella typhimurium strain LT2. Genetics 1983; 105:801–811
    [Google Scholar]
  34. Sanderson K. E., Sciore P., Lui, S-L, Hessel A. Location of IS200 on the genomic cleavage map of Salmonella typhimurium LT2. J Bacteriol 1993; 175:7624–7628
    [Google Scholar]
  35. O’Reilly C., Black G. W., Laffey R., McConnell D. J. Molecular analysis of an IS200 insertion in the gpt gene of Salmonella typhimurium LT2. J Bacteriol 1990; 172:6599–6601
    [Google Scholar]
  36. Casadesus J., Roth J. R. Absence of insertions among spontaneous mutants of Salmonella typhimurium. Mol Gen Genet 1989; 216:210–216
    [Google Scholar]
  37. Lam S., Roth J. R. Structural and functional studies on insertion element IS200. J Mol Biol 1986; 187:157–167
    [Google Scholar]
  38. Biseri M., Ochman H. The ancestry of insertion sequences common to Escherichia coli and Salmonella typhimurium. J Bacteriol 1993; 175:7863–7868
    [Google Scholar]
  39. Gibert I., Barbé, J., Casadesus J. Distribution of insertion sequence IS200 in Salmonella and Shigella. J Gen Microbiol 1990; 136:2555–2560
    [Google Scholar]
  40. Gibert I., Carroll K., Hillyard D. R., Barbe J., Casadesus J. IS200 is not a member of the IS600 family of insertion sequences. Nucleic Acids Res 1991; 19:1343
    [Google Scholar]
  41. Bisercic M., Ochman H. Natural populations of Escherichia coli and Salmonella typhimurium harbor the same classes of insertion sequences. Genetics 1993; 133:449–454
    [Google Scholar]
  42. Eisenstein B.I. New molecular techniques for microbial epidemiology and the diagnosis of infectious diseases. J Infect Dis 1990; 161:595–602
    [Google Scholar]
  43. Maslow J. N., Mulligan M. E., Arbeit R. D. Molecular epidemiology: application of contemporary techniques to the typing of microorganisms. Clin Infect Dis 1993; 17:153–164
    [Google Scholar]
  44. Beltran P., Musser J. M., Helmuth R. Towards a population genetic analysis of Salmonella: genetic diversity and relationships among strains of serotypes S. choleraesuis S. derby S. dublin S. enteritidis S. heidelberg S. infantis S. newport and S. typhimurium. Proc Natl Acad Sci USA 1988; 85:7753–7757
    [Google Scholar]
  45. Ørskov F., Ørskov I. Summary of a workshop on the clone concept in the epidemiology, taxonomy, and evolution of the Enterobacteriaceae and other bacteria. J Infect Dis 1983; 148:346–357
    [Google Scholar]
  46. Stanley J., Baquar N. Phylogenetics of Salmonella enteritidis. Int J Food Microbiol 1994; 21:79–87
    [Google Scholar]
  47. Stanley J., Baquar N., Threlfall E. J. Genotypes and phylogenetic relationships of Salmonella typhimurium are defined by molecular fingerprinting of IS20 and 16S rrn loci. J Gen Microbiol 1993; 139:1133–1140
    [Google Scholar]
  48. Ward L. R., deSa J. D. H., Rowe B. A phage-typing scheme for Salmonella enteritidis. Epidemiol Infect 1987; 99:291–294
    [Google Scholar]
  49. Anderson E. S., Ward L. R., De Saxe M. J., deSa J. Bacteriophagetyping designations of Salmonella typhimurium. J Hyg 1977; 78:297–300
    [Google Scholar]
  50. Threlfall E. J., Frost J. A. The identification, typing and fingerprinting of Salmonella: laboratory aspects and epidemiological applications. J Appl Bacteriol 1990; 68:5–16
    [Google Scholar]
  51. Stanley J., Powell N., Jones C., Bumens A. P. A framework for IS200, 16S rRNA gene and plasmid-profile analysis in Salmonella serogroup Dl. J Med Microbiol 1994; 41:112–119
    [Google Scholar]
  52. Selander R. K., Smith N. H., Li J. Molecular evolutionary genetics of the cattle-adopted serovar Salmonella dublin. J Bacteriol 1992; 174:3587–3592
    [Google Scholar]
  53. Li J., Smith N. H., Nelson K. Evolutionary origin and radiation of the avian-adapted non-motile salmonellae. J Med Microbiol 1993; 38:129–139
    [Google Scholar]
  54. Rodrigue D. C., Tauxe R. V., Rowe B. International increase in Salmonella enteritidis: a new pandemic?. Epidemiol Infect 1990; 105:21–27
    [Google Scholar]
  55. Khakhria R., Duck D., Lior H. Distribution of Salmonella enteritidis phage types in Canada. Epidemiol Infect 1991; 106:25–32
    [Google Scholar]
  56. Stanley J., Jones C. S., Threlfall E. J. Evolutionary lines among Salmonella enteritidis phage types are identified by insertion sequence IS200 distribution. FEMS Microbiol Lett 1991; 82:83–90
    [Google Scholar]
  57. Stanley J., Goldsworthy M., Threlfall E. J. Molecular phylogenetic typing of pandemic isolates of Salmonella enteritidis. FEMS Microbiol Lett 1992; 90:153–160
    [Google Scholar]
  58. Stanley J., Bumens A. P., Threlfall E. J., Chowdry N., Goldsworthy M. Genetic relationships among strains of Salmonella enteritidis in a national epidemic in Switzerland. Epidemiol Infect 1992; 108:213–220
    [Google Scholar]
  59. Olsen J. E., Skov M. N., Threlfall E. J., Brown D. J. Clonal lines of Salmonella enterica serotype Enteritidis documented by IS200-, ribo-, pulsed-field gel electrophoresis and RFLP typing. J Med Microbiol 1994; 40:15–22
    [Google Scholar]
  60. Millemann Y., Lesage, M-C, Chaslus-Dancla E., Lafont J.-R. Value of plasmid-profiling, ribotyping, and detection of IS200 for tracing avian isolates of Salmonella typhimurium and S. enteritidis. J Clin Microbiol 1995; 33:173–179
    [Google Scholar]
  61. Chowdry N., Threlfall E. J., Rowe B., Stanley J. Genotype analysis of faecal and blood isolates of Salmonella dublin from humans in England and Wales. Epidemiol Infect 1993; 110:217–225
    [Google Scholar]
  62. Stanley J., Chowdry N., Powell N., Threlfall E. J. Chromosomal genotypes (evolutionary lines) of Salmonella berta. FEMS Microbiol Lett 1992; 95:247–252
    [Google Scholar]
  63. Threlfall E. J., Torre E., Ward L. R., Davaloz-Perez A., Rowe B., Gibert I. Insertion sequence IS200 fingerprinting of Salmonella typhi: an assessment of epidemiological applicability. Epidemiol Infect 1994; 112:253–261
    [Google Scholar]
  64. Stanley J., Baquar N., Bumens A. P. Molecular subtyping scheme for Salmonella panama. J Clin Microbiol 33:1206–1211
    [Google Scholar]
  65. Pelkonen S., Romppanen, E-L, Siitonen A., Pelkonen J. Differentiation of Salmonella serovar Infantis isolates from human and animal sources by fingerprinting IS200 and 16S rrn loci. J Clin Microbiol 1994; 32:2128–2133
    [Google Scholar]
  66. Ezquerra E., Bumens A. P., Frith K., Costas M., Stanley J. Molecular genotype analysis of Salmonella bovismorbificans. Mol Cell Probes 1993; 7:45–54
    [Google Scholar]
  67. Torre E., Threlfall E. J., Hampton M. D., Ward L. R., Gibert I., Rowe B. Characterization of Salmonella virchow phage types by plasmid profile and IS200 distribution. J Appl Bacteriol 1993; 75:435–440
    [Google Scholar]
  68. Zinder N. D., Lederberg J. Genetic exchange in Salmonella. J Bacteriol 1952; 64:679–699
    [Google Scholar]
  69. Demerec M., Blomstrand I., Demerec Z. E. Evidence of complex loci in Salmonella. Proc Natl Acad Sci USA 1955; 41:359–364
    [Google Scholar]
  70. Ward L. R. Salmonella surveillance and control. In Marengo G., Pastoni F. (eds) Infectious diseases and intoxications with the third millenium approaching. Proceedings of the Fourth International Symposium Luxembourg: European Community Publications; 199469–73
    [Google Scholar]
  71. Maron D. M., Ames B. N. Revised methods for the Salmonella mutagenicity test. Mutat Res 1983; 113:173–215
    [Google Scholar]
  72. Baquar N., Threlfall E. J., Rowe B., Stanley J. Molecular subtyping within a single Salmonella typhimurium phage type, DT204C, with a PCR-generated probe for IS200. FEMS Microbiol Lett 1993; 112:217–222
    [Google Scholar]
  73. Baquar N., Threlfall E.J., Rowe B., Stanley J. Phage type 193 of Salmonella typhimurium contains different chromosomal genotypes and multiple IS200 profiles. FEMS Microbiol Lett 1994; 115:291–296
    [Google Scholar]
  74. Fica A. E., Horowitz H. W., Lior H., Cabello F. C. Demonstration of persistence of Salmonella typhimurium in an AIDS patient by molecular methods. J Clin Microbiol 1994; 32:2327–2330
    [Google Scholar]
  75. Schwartz S., Liebisch B. Use of ribotyping, IS200 typing and plasmid analysis for the identification of Salmonella enterica subsp. enterica serovar Typhimurium vaccine strain Zoosaloral H, and its differentiation from wild type strains of the same serovar. Int J Med Micro Virol Parasitol Infect Dis 1994; 281:442–450
    [Google Scholar]
  76. Stanley J., Bumens A.P., Powell N., Chowdry N., Jones C. The insertion sequence IS200 fingerprints chromosonal genotypes and epidemiological relationships in Salmonella heidelberg. J Gen Microbiol 1992; 138:2329–2336
    [Google Scholar]
  77. Beltran P., Plock S. A., Smith N. H., Whittam T. S., Old D. C., Selander R. K. Reference collection of strains of the Salmonella typhimurium complex from natural populations. J Gen Microbiol 1991; 137:601–606
    [Google Scholar]
  78. Selander R. K., Beltran P., Smith N. H. Evolutionary genetic relationships of clones of Salmonella serovars that cause human typhoid and other enteric fevers. Infect Immun 1990; 58:2262–2275
    [Google Scholar]
  79. Ezquerra E., Bumens A., Jones C., Stanley J. Genotypic typing and phylogenetic analysis of Salmonella paratyphi B and S. java with IS200. J Gen Microbiol 1993; 139:2409–2414
    [Google Scholar]
  80. Baquar N., Bumens A. P., Stanley J. Comparative evaluation of molecular typing of strains from a national epidemic due to Salmonella brandenburg by rRNA gene and IS200 probes and pulsed-field gel electrophoresis. J Clin Microbiol 1994; 32:1876–1880
    [Google Scholar]
  81. McAdam R., Guilhot C., Gicquel B. Transpositions in mycobacteria. In Bloom B. R. (ed) Tuberculosis pathogenesis, protection, and control Washington DC: American Society for Microbiology; 1994199–216
    [Google Scholar]
  82. Guerrero G., Bemasconi C., Burki D., Bodmer T., Telenti A. A novel insertion element from Mycobacterium avium, IS1245, is a specific target for analysis of strain relatedness. J Clin Microbiol 1995; 33:304–307
    [Google Scholar]
  83. Roiz M. P., Palenque E., Guerrero C., Garcia M. J. Use of restriction fragment length polymorphism as a genetic marker for typing Mycobacterium avium strains. J Clin Microbiol 1995; 33:1389–1391
    [Google Scholar]
  84. Green E. P., Tizard M. L. V., Moss M. T. Sequence and characteristics of IS900, an insertion element identified in a human Crohn’s disease isolate of Mycobacterium paratuberculosis. Nucleic Acids Res 1989; 17:9063–9073
    [Google Scholar]
  85. Collins D. M., Stephens D. M. Identification of an insertion sequence, IS1081, in Mycobacterium bovis. FEMS Microbiol Lett 1991; 83:11–16
    [Google Scholar]
  86. Yang Z. H., de Haas P. E. W., van Soolingen D., van Embden J. D. A., Andersen A. B. Restriction fragment length polymorphism of Mycobacterium tuberculosis strains isolated from Greenland during 1992: evidence of tuberculosis transmission between Greenland and Denmark. J Clin Microbiol 1994; 32:3018–3025
    [Google Scholar]
  87. van Soolingen D., Hermans P. W. M., de Haas P. E. W., van Embden J. D. A. Insertion element IS6110-associated restriction fragment length polymorphisms in Mycobacterium tuberculosis complex species: a reliable tool for recognizing Mycobacterium bovis BCG. J Clin Microbiol 1991; 30:1772–1777
    [Google Scholar]
  88. Thierry D., Cave M. D., Eisenach K. D. IS6110, an IS-like element of Mycobacterium tuberculosis complex. Nucleic Acids Res 1990; 18:188
    [Google Scholar]
  89. Thierry D., Brisson-Noel A., Vincent-Levy-Frebault V., Nguyen S., Guesdon, J-C, Gicquel B. Characterization of a Mycobacterium tuberculosis insertion sequence, IS6110, and its application in diagnosis. J Clin Microbiol 1990; 28:2668–2673
    [Google Scholar]
  90. McAdam R. A., Hermans P. W. M., van Soolingen D. Characterization of a Mycobacterium tuberculosis insertion sequence belonging to the I S3 family. Mol Microbiol 1990; 4:1607–1613
    [Google Scholar]
  91. Hermans P. W. M., van Soolingen D., Bik E. M., de Haas P. E. W., Dale J. W., van Embden J.D. A. Insertion element IS987 from Mycobacterium bovis BCG is located in a hot-spot integration region for insertion elements in Mycobacterium tuberculosis complex strains. Infect Immun 1991; 59:2695–2705
    [Google Scholar]
  92. Cave M. D., Eisenach K. D., McDermott P. F., Bates J. H., Crawford J. T. IS6110: conservation of sequence in the Mycobacterium tuberculosis complex and its utilization in DNA fingerprinting. Mol Cell Probes 1991; 5:73–80
    [Google Scholar]
  93. Mendiola M. V., Martin C., Otal I., Gicquel B. Analysis of the regions responsible for IS6110 RFLPs in a single Mycobacterium tuberculosis strain. Res Microbiol 1992; 143:767–772
    [Google Scholar]
  94. Fomukong N. G., Dale J. W. Transpositional activity of IS985 in Mycobacterium smegmatis. Gene 1993; 130:99–105
    [Google Scholar]
  95. Jones W. D., Kubica G. P. Fluorescent antibody techniques with mycobacteria. III. Investigation of five serologically homogenous groups of mycobacteria. Zentralbl Bakteriol Orig 1968; 207:58–62
    [Google Scholar]
  96. Imaeda T. Deoxyribonucleic acid relatedness among selected strains of Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium bovis BCG, Mycobacterium microti, and Mycobacterium africanum. Int J Syst Bacteriol 1985; 35:147–150
    [Google Scholar]
  97. Eisenach K. D., Crawford J. T., Bates J. H. Genetic relatedness among strains of the Mycobacterium tuberculosis complex. Analysis of restriction fragment heterogeneity using cloned DNA probes. Am Rev Respir Dis 1986; 133:1065–1068
    [Google Scholar]
  98. Ross B. C., Raios K., Jackson K., Sievers A., Dwyer B. Differentiation of Mycobacterium tuberculosis strains by use of a nonradioactive Southern blot hybridization method. J Infect Dis 1991; 163:904–907
    [Google Scholar]
  99. van Embden J. D. A., Cave M. D., Crawford J. T. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol 1993; 31:406–409
    [Google Scholar]
  100. Hermans P. W. M., van Soolingen D., Dale J. W. Insertion element IS986 from Mycobacterium tuberculosis: a useful tool for diagnosis and epidemiology of tuberculosis. J Clin Microbiol 1990; 28:2051–2058
    [Google Scholar]
  101. van Soolingen D., Hermans P. W. M., de Haas P. E. W., Soil D. R., van Embden J. D. A. Occurrence and stability of insertion sequences in Mycobacterium tuberculosis complex strains: evaluation of an insertion sequence-dependent DNA polymorphism as a tool in the epidemiology of tuberculosis. J Clin Microbiol 1991; 29:2578–2586
    [Google Scholar]
  102. Cave M. D., Eisenach K. D., Templeton G. Stability of DNA fingerprint pattern produced with IS6110 in strains of Mycobacterium tuberculosis. J Clin Microbiol 1994; 32:262–266
    [Google Scholar]
  103. Chevrel-Dellagi D., Abderrahman A., Haltiti R., Koubaji H., Gicquel B., Dellagi K. Large-scale DNA fingerprinting of Mycobacterium tuberculosis strains as a tool for epidemiological studies of tuberculosis. J Clin Microbiol 1993; 31:2446–2450
    [Google Scholar]
  104. van Soolingen D., de Haas P. E. W., Hermans P. W. M., Groenen P. M. A., van Embden J.D. A. Comparison of various repetitive DNA elements as genetic markers for strain differentiation and epidemiology of Mycobacterium tuberculosis. J Clin Microbiol 1993; 31:1987–1995
    [Google Scholar]
  105. Yuen L. K. W., Ross B. C., Jackson K. M., Dwyer B. Characterization of Mycobacterium tuberculosis strains from Vietnamese patients by Southern blot hybridization. J Clin Microbiol 1993; 31:1615–1618
    [Google Scholar]
  106. Small P. M., Hopewell P. C., Singh S. P. The epidemiology of tuberculosis in San Francisco. A population-based study using conventional and molecular methods. N Engl J Med 1994; 330:1703–1709
    [Google Scholar]
  107. Alland D., Kalkut G. E., Moss A. R. Transmission of tuberculosis in New York City. An analysis by DNA fingerprinting and conventional epidemiologic methods. N Engl J Med 1994; 330:1710–1716
    [Google Scholar]
  108. Yang Z. H., Mtoni I., Chonde M. DNA fingerprinting and phenotyping of Mycobacterium tuberculosis isolates from human immunodeficiency virus (HlV)-seropositive and HIV-seronegative patients in Tanzania. J Clin Microbiol 1995; 33:1064–1069
    [Google Scholar]
  109. Kumar D., Saunders N. A., Watson J. Occurrence of clusters of Mycobacterium tuberculosis infection in north-west London using RFLP typing. Tubercle Lung Dis 1995; 76: Suppl 246
    [Google Scholar]
  110. Ross B.C., Dwyer B. Rapid, simple method for typing isolates of Mycobacterium tuberculosis by using the polymerase chain reaction. J Clin Microbiol 1993; 31:329–334
    [Google Scholar]
  111. Plikaytis B. B., Crawford J. T., Woodley C. L. Rapid, amplification-based fingerprinting of Mycobacterium tuberculosis. J Gen Microbiol 1993; 139:1537–1542
    [Google Scholar]
  112. Groenen P. M. A., Bunschoten A. E., van Soolingen D., van Embden J. D. A. Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis: application for strain differentiation by a novel typing method. Mol Microbiol 1993; 10:1057–1065
    [Google Scholar]
  113. Haas W. H., Butler W. R., Woodley C. L., Crawford J. T. Mixed-linker polymerase-chain reaction: a new method for rapid fingerprinting of isolates of the Mycobacterium tuberculosis complex. J Clin Microbiol 1993; 31:1293–1298
    [Google Scholar]
  114. Palittapongampim P., Chomyc S., Fanning A., Kunimoto D. DNA fingerprinting of Mycobacterium tuberculosis isolates by ligation-mediated polymerase chain reaction. Nucleic Acids Res 1993; 21:761–762
    [Google Scholar]
  115. Ochman H., Gerber A. S., Haiti D. L. Genetic applications of an inverse polymerase chain reaction. Genetics 1988; 120:621–623
    [Google Scholar]
  116. Saunders N. A., Patel S. Rapid fingerprinting of Mycobacterium tuberculosis by PCR. In The challenge of tuberculosis. Abstracts of The Lancet Conference 199564
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-45-4-236
Loading
/content/journal/jmm/10.1099/00222615-45-4-236
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error