1887

Abstract

The heparin-binding properties of six different species of coagulase-negative staphylococci were examined by a particle agglutination assay. Heparin (mol.wt 4000-6000), mildly treated with sodium periodate, was covalently coupled to amino-modified latex beads (0.72 μm diameter). The particle agglutination assay was validated by comparing results with the adhesion (percentage binding of adherent cells) of coagulase-negative staphylococcal strains to heparinised microtitration plates. Of 38 different coagulase-negative staphylococcal strains tested, 30 showed agglutination reactivity with heparincoated latex beads. Strains of different coagulase-negative staphylococcal species agglutinated heparin-coated latex beads to various extents (e.g., cells of strains reacted more strongly than cells of strains). The agglutination reaction was significantly inhibited by fucoidan, suramin, λ-carrageenan and other sulphated compounds, but not by non-sulphated carbohydrate polymers such as hyaluronic acid. Agglutination of staphylococcal cells with heparin-coated latex beads was completely blocked by a cell-surface extract. These results suggest that structures responsible for heparin binding are exposed on the cell surface.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-45-4-263
1996-10-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/45/4/medmicro-45-4-263.html?itemId=/content/journal/jmm/10.1099/00222615-45-4-263&mimeType=html&fmt=ahah

References

  1. Fransson L.-Å. Structure and functions of cell associated proteoglycans. FEBS Lett 1987; 12:406–411
    [Google Scholar]
  2. Tyrrell D. J., Kilfeather S., Page C. P. Therapeutic uses of heparin beyond its traditional role as an anticoagulant. Trends Pharmacol Sci 1995; 16:198–204
    [Google Scholar]
  3. Lycke E., Johansson M., Svennerholm B., Lindahl U. Binding of Herpes simplex virus to cellular heparan sulphate, an initial step in the adsorption process. J Gen Virol 1991; 72:1131–1137
    [Google Scholar]
  4. Chen JC-R, Stephens R. S. Trachoma and LGV biovars of Chlamydia trachomatis share the same glycosaminoglycan-dependent mechanism for infection of eukaryotic cells. Mol Microbiol 1994; 11:501–507
    [Google Scholar]
  5. Menozzi F. D., Gantiez C., Locht C. Interaction of the Bordetella pertussis filamentous hemagglutinin with heparin. FEMS Microbiol Lett 1991; 78:59–64
    [Google Scholar]
  6. Choi S. H., Stinson M. W. Purification of a Streptococcus mutans protein that binds to heart tissue and glycosaminoglycans. Infect Immun 1989; 57:3834–3840
    [Google Scholar]
  7. Ortega-Barria E., Pereira M. E. A. A novel T. cruzi heparinbinding protein promotes fibroblast adhesion and penetration of engineered bacteria and Trypanosomes into mammalian cells. Cell 1991; 67:411–421
    [Google Scholar]
  8. Ascencio F., Fransson, L-A, Wadstrom T. Affinity of the gastric pathogen Helicobacter pylori for the N-sulphated glycosaminoglycan heparan sulphate. J Med Microbiol 1993; 38:240–244
    [Google Scholar]
  9. Hirmo S., Utt M., Ringer M. Inhibition of heparan sulphate and other glycosaminoglycans binding to Helicobacter pylori by various polysulphated carbohydrates. FEMS Immunol Med Microbiol 1995; 10:301–306
    [Google Scholar]
  10. Butcher B. A., Sklar L. A., Seamer L. C., Glew R. H. Heparin enhances the interaction of infective Leishmania donovani promastigotes with mouse peritoneal macrophages. A fluorescence flow cytometric analysis. J Immunol 1992; 148:2879–2886
    [Google Scholar]
  11. Liang O. D., Ascencio F., Fransson, L-A, Wadstrom T. Binding of heparan sulphate to Staphylococcus aureus. Infect Immun 1992; 60:899–906
    [Google Scholar]
  12. Paulsson M., Gouda I., Larm O., Ljungh A. Adherence of coagulase-negative staphylococci to heparin and other glycosaminoglycans immobilized on polymer surfaces. J Biomed Mater Res 1994; 28:311–317
    [Google Scholar]
  13. Ljungh Å., Wadstrom T. Binding of extracellular matrix proteins by microbes. Methods Enzymol 1995; 253:501–514
    [Google Scholar]
  14. Paulsson M., Ljungh, Å., Wadstrom T. Rapid identification of fibronectin, vitronectin, laminin, and collagen cell surface binding proteins on coagulase-negative staphylococci by particle agglutination assays. J Clin Microbiol 1992; 30:2006–2012
    [Google Scholar]
  15. Appelgren P., Ransjö, U., Bindslev L., Larm O. Does surface heparinisation reduce bacterial colonisation of central venous catheters?. Lancet 1994; 345:130
    [Google Scholar]
  16. Wadström T., Eliasson I., Holder I., Ljungh Å. (eds) Pathogenesis of wound and biomaterial-associated infections. London: Springer-Verlag; 1990
    [Google Scholar]
  17. Wadström T., Holder I. A., Kronvall G. Molecular pathogenesis of surgical infections. 21st Erik K. Femstrom Symposium Stuttgart: Gustav Fisher Verlag; 1994
    [Google Scholar]
  18. Pulverer G., Beuth J., Ko H.L., Solter J., Uhlembruck G. Modification of glycosylation by tunicamycin treatment inhibits lectin-mediated adhesion of Streptococcus pneumoniae to various tissues. Zentralbl Bakteriol Mikrobiol Hyg A 1987; 266:137–144
    [Google Scholar]
  19. Mach H., Volkin D. B., Burke C. J. Nature of the interaction of heparin with acidic fibroblast growth factor. Biochemistry 1993; 32:5480–5489
    [Google Scholar]
  20. Lam L. H., Silbert J. E., Rosenberg R. D. The separation of active and inactive forms of heparin. Biochem Biophys Res Commun 1976; 69:570–577
    [Google Scholar]
  21. Naidu A. S., Paulsson M., Wadstrom T. Particle agglutination assays for rapid detection of fibronectin, fibrinogen, and collagen receptors on Staphylococcus aureus. J Clin Microbiol 1988; 26:1549–1554
    [Google Scholar]
  22. Mamo W., Fröman G. In vivo-like antigenic surface properties of Staphylococcus aureus from bovine mastitis induced upon growth in milk whey. Microbiol Immunol 1994; 38:801–804
    [Google Scholar]
  23. Pejler G., Lindahl U., Larm O., Scholander E., Sandgren E., Lundblad A. Monoclonal antibodies specific for oligosaccharides prepared by partial nitrous acid deamination of heparin. J Biol Chem 1988; 263:5197–5201
    [Google Scholar]
  24. Ofek I., Doyle R.J. Principles of bacterial adhesion. In Bacterial adhesion to cells and tissues New York: Chapman and Hall; 19941–15
    [Google Scholar]
  25. Ascencio F., Aleljung P., Wadström T. Particle agglutination assays to identify fibronectin and collagen cell surface receptors and lectins in Aeromonas and Vibrio species. Appl Environ Microbiol 1990; 56:1926–1931
    [Google Scholar]
  26. Eiring P., Manncke B., Gerbracht K., Werner H. Bacteroides fragilis adheres to laminin significantly stronger than Bacteroides thetaiotaomicron and other species of the genus. Int J Med Microbiol Virol Parasitol Infect Dis 1995; 282:279–286
    [Google Scholar]
  27. Reza A. H., Ascencio F., Ljunch, Å., Wadström T. Particle agglutination assay for detection of albumin and IgG binding cell surface components of Helicobacter pylori. Int J Med Microbiol Virol Parasitol Infect Dis 1995; 282:255–264
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-45-4-263
Loading
/content/journal/jmm/10.1099/00222615-45-4-263
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error