1887

Abstract

Taxonomic classification of bacteriophages specific for and has not been reported previously. A set of 16 virulent phages, distinguishable by their lytic spectra, has been used extensively for epidemiological typing of and at Preston Public Health Laboratory. These phages were investigated by electron microscopy, pulsed-field gel electrophoresis and restriction endonuclease analysis. All phages had icosahedral heads and long contractile tails. Accordingly, they were classified as members of the Myoviridae family. These phages could be subdivided into three groups according to genome size and head diameter: group 1, two phages with head diameters of 140.6 and 143.8 nm and genome sizes of 320 kb; group II, five phages with average head diameters of 99 nm and average genome sizes of 184 kb; and group III, nine phages with average head sizes of 100 nm and average genome sizes of 138 kb. Phages NCTC12676 and NCTC12677 of group I had unusually large genomes of 320 kb which are two of the largest phage genomes to be described. Restriction endonuclease analysis demonstrated that DNA from the 16 phages was refractory to digestion by a number of restriction enzymes.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-47-2-123
1998-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/47/2/medmicro-47-2-123.html?itemId=/content/journal/jmm/10.1099/00222615-47-2-123&mimeType=html&fmt=ahah

References

  1. Bokkenheuser V. D., Richardson N. J., Bryner J. H. Detection of enteric campylobacteriosis in children. J Clin Microbiol 1979; 9:227–232
    [Google Scholar]
  2. Bryner J. H., Ritchie A. E., Foley J. W. Techniques for phage typing Campylobacter jejuni. In Newell D. G. (ed) Campylobacter. Epidemiology, pathogenesis and biochemistry Lancaster, MTP: 198252–56
    [Google Scholar]
  3. Ritchie A. E., Bryner J. H., Foley J. W. Role of DNA and bacteriophage in Campylobacter auto-agglutination. J Med Microbiol 1983; 16:333–340
    [Google Scholar]
  4. Bryner J. H., Ritchie A. E., Foley J. W., Berman D. T. Isolation and characterization of a bacteriophage for Vibrio fetus. J Virol 1970; 6:94–99
    [Google Scholar]
  5. Bryner J. H., Ritchie A. E., Booth G. D., Foley J. W. Lytic activity of vibrio phages of strains of Vibrio fetus isolated from man and animals. Appl Microbiol 1973; 26:404–409
    [Google Scholar]
  6. Chang W., Ogg J. E. Transduction in Vibrio fetus. Am J Vet Res 1970; 31:919–924
    [Google Scholar]
  7. Firehammer B. D., Border M. Isolation of temperate bacteriophages from Vibrio fetus. Am J Vet Res 1968; 29:2229–2235
    [Google Scholar]
  8. Fletcher R. D. Activity and morphology of Vibrio coli phage. Am J Vet Res 1965; 26:361–364
    [Google Scholar]
  9. Grajewski B. A., Kusek J. W., Gelfand H. M. Development of a bacteriophage typing system for Campylobacter jejuni and Campylobacter coli. J Clin Microbiol 1985; 22:13–18
    [Google Scholar]
  10. Khakhria R., Lior H. Extended phage-typing scheme for Campylobacter jejuni and Campylobacter coli. Epidemiol Infect 1992; 108:403–414
    [Google Scholar]
  11. Salama S. M., Bolton F. J., Hutchinson D. N. Improved method for the isolation of Campylobacter jejuni and Campylobacter coli bacteriophages. Lett Appl Microbiol 1989; 8:5–7
    [Google Scholar]
  12. Salama S. M. Bacteriophages and bacteriophage typing of Campylobacter jejuni and Campylobacter coli. PhD Thesis Salford University; 1990
    [Google Scholar]
  13. Salama S. M., Bolton F. J., Hutchinson D. N. Application of a new phagetyping scheme to Campylobacters isolated during outbreaks. Epidemiol Infect 1990; 104:405–411
    [Google Scholar]
  14. Ackermann H.-W., DuBow M. S., Jarvis A. W. The species concept and its application to tailed phages. Arch Virol 1992; 124:69–82
    [Google Scholar]
  15. Bolton F. J., Holt A. M., Hutchinson D. N. Campylobacter biotyping scheme of epidemiological value. J Clin Pathol 1984; 37:677–681
    [Google Scholar]
  16. Sambrook J., Fritsch E. F., Maniatis T. (eds) Molecular cloning: a laboratory manual 2nd edn Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989
    [Google Scholar]
  17. Adams M. H. Bacteriophages. New York: NY, Interscience Publishers; 1959
    [Google Scholar]
  18. Jarvis A. W. DNA-DNA homology between lactic streptococci and their temperate and lytic phages. Appl Environ Microbiol 1984; 47:1031–1038
    [Google Scholar]
  19. Jarvis A. W., Fitzgerald G. F., Mata M. Species and type phages of lactococcal bacteriophages. Intervirology 1991; 32:2–9
    [Google Scholar]
  20. Warning D. R. A., Bolton F. J., Hutchinson D. N. 10, 001 Campylobacters: a review of five years of bacteriophage typing. In Newell D. G., Ketley J. M., Feldman R. A. (eds) Campylobacters, helicobacters, and related organisms New York: Plenum Press; 1996233–235
    [Google Scholar]
  21. McCelland M., Jones R., Patel Y., Nelson M. Restriction endonucleases for pulsed field mapping of bacterial genomes. Nucleic Acids Res 1987; 15:5985–6005
    [Google Scholar]
  22. Prevots F., Mata M., Ritzenhaler P. Taxonomic differentiation of 101 lactococcal bacteriophages and characterization of bacteriophages with unusually large genomes. Appl Environ Microbiol 1990; 56:2180–2185
    [Google Scholar]
  23. Kim J. S., Davidson N. Electron microscope heteroduplex studies of sequence relations of T2, T4, and T6 bacteriophage DNA’s. Virology 1974; 57:93–111
    [Google Scholar]
  24. Loessner M. J., Krause L. B., Henle T., Scherer S. Structural proteins and DNA characteristics of 14 Listeria typing bacteriophages. J Gen Virol 1994; 75:701–710
    [Google Scholar]
  25. Hemphill H. E., Whiteley H. R. Bacteriophages of Bacillus subtilis. Bacteriol Rev 1975; 39:275–315
    [Google Scholar]
  26. Braun V., Hertwig S., Neve H., Geis A., Teuber M. Taxonomic differentiation of bacteriophages of Lactococcus lactis by electron microscopy, DNA-DNA hybridization, and protein profiles. J Gen Microbiol 1989; 135:2551–2560
    [Google Scholar]
  27. Coveney J. A., Fitzgerald G. F., Daly C. Detailed characterization and comparison of four lactic streptococcal bacteriophages based on morphology, restriction mapping, DNA homology, and structural protein analysis. Appl Environ Microbiol 1987; 53:1439–1447
    [Google Scholar]
  28. Jarvis A. W., Meyer J. Electron microscope heteroduplex study and restriction endonuclease cleavage analysis of the DNA genomes of three lactic streptococcal bacteriophages. Appl Environ Microbiol 1986; 51:566–571
    [Google Scholar]
  29. Loessner M. J., Nuegirg E., Zink R., Scherer S. Isolation, classification and molecular characterization of bacteriophages for Enterobacter species. J Gen Microbiol 1993; 139:2627–2633
    [Google Scholar]
  30. Sunari M., Watanabe T., Oda H., Murooka H., Nakajima M. Characterization of the genome of the Rhodococcus rhodo-chrous bacteriophage NJL. Appl Environ Microbiol 1993; 59:97–100
    [Google Scholar]
  31. Powell I. B., Davidson B. E. Resistance to in vitro restriction of DNA from lactic streptococcal bacteriophage c6A. Appl Environ Microbiol 1986; 51:1358–1360
    [Google Scholar]
  32. Huang L.-H., Famet C. M., Ehrlich K. C., Ehrlich M. Digestion of highly modified bacteriophage DNA by restriction endonucleases. Nucleic Acids Res 1982; 10:1579–1591
    [Google Scholar]
  33. Sharp P. M. Molecular evolution of bacteriophages: evidence of selection against the recognition sites of host restriction enzymes. Mol Biol Evol 1986; 3:75–83
    [Google Scholar]
  34. Warren R. A. J. Modified bases in bacteriophage DNAs. Annu Rev Microbiol 1980; 34:137–158
    [Google Scholar]
  35. Noyer-Weidner M., Pawlek B., Jentsch S., Gunthert U., Trautner T. A. Restriction and modification in Bacillus subtilis: gene coding for a Bus R–specific modification methyltransferase in the temperate bacteriophage ϕ3T. J Virol 1981; 38:1077–1080
    [Google Scholar]
  36. Kruger D. H., Bickle T. A. Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts. Microbiol Rev 1983; 47:345–360
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-47-2-123
Loading
/content/journal/jmm/10.1099/00222615-47-2-123
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error