1887

Abstract

Rifampicin is an antibiotic mostly used to treat tuberculosis and leprosy, and, occasionally, other diseases. Resistance is due to alterations in membrane permeability or to mutation in the gene coding for mRNA polymerase. Both these mechanisms originate chromosomal mutation. However, a rifampicin-resistant strain harboured a multiresistance plasmid which transferred rifampicin resistance when transformed into or Rifampicin readily diffused into the sensitive cells of the and recipients, but the transformants with the plasmid, pSCL were resistant to the drug and did not accumulate it. Potassium cyanide restored the diffusion of rifampicin into the resistant cells, indicating that an efflux pump was involved in the resistance mechanism. The resistance of the transformants and the wild strain was also abolished in sphaeroplasts generated by EDTA lysozyme treatment. Analysis of membrane proteins by SDS-PAGE revealed the presence of two new proteins in the plasmid-containing cells of and and not in the plasmid-free cells. These may be involved in the efflux of rifampicin.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-47-3-197
1998-03-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jmm/47/3/medmicro-47-3-197.html?itemId=/content/journal/jmm/10.1099/00222615-47-3-197&mimeType=html&fmt=ahah

References

  1. Cohen M. L. Epidemiology of drug resistance: implications for a postantimicrobial era. Science 1992; 257:1050–1055
    [Google Scholar]
  2. Neu H. C. The crisis of antibiotic resistance. Science 1992; 257:1064–1073
    [Google Scholar]
  3. Kucers A., Bennet N. M. c. K. Rifampicin (Rifampicin). In: The use of antibiotics. A comprehensive review with clinical emphasis. 3rd edn London: William Heinemann; 1979552–584
    [Google Scholar]
  4. Spratt B. G. Resistance to antibiotics mediated by target alterations. Science 1994; 264:388–393
    [Google Scholar]
  5. Severinov K., Soushko M., Goldfarb A., Nikiforov V. Rifampicin region revisited: new rifampicin-resistant and streptolydigin-resistant mutants in the β-subunit of Escherichia coli RNA polymerase. J Biol Chem 1993; 268:14820–14825
    [Google Scholar]
  6. Hui J., Gordon N., Kajioka R. Permeability barrier to rifampicin in mycobacteria. Antimicrob Agents Chemother 1977; 11:773–779
    [Google Scholar]
  7. Cohen S. P., Yan W., Levy S. B. A multidrug resistance regulatory chromosomal locus is widespread among enteric bacteria. J Infect Dis 1993; 168:484–488
    [Google Scholar]
  8. Chandrasekaran S., Lalithakumari D. Plasmid-assisted morpholine degradation by Pseudomonas fluorescens CAS 102. World J Microbiol Biotechnol 1997 (in press)
    [Google Scholar]
  9. Maniatis T., Fritsch E. F., Sambrook J. Molecular cloning: a laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1982
    [Google Scholar]
  10. Berry D., Kropinski A. M. Effect of lipopolysaccharide mutations and temperature on plasmid transformation efficiency in Pseudomonas aeruginosa. Can J Microbiol 1986; 32:436–438
    [Google Scholar]
  11. Nikaido H., Rosenberg E. Y. Cir and Fiu proteins in the outer membrane of Escherichia coli catalyze transport of monomeric catechols: study with β-lactam antibiotics containing catechol and analogous groups. J Bacteriol 1990; 172:1361–1367
    [Google Scholar]
  12. Nikaido H. Outer membrane of Salmonella typhimurium: transmembrane diffusion of some hydrophobic substances. Biochim Biophys Acta 1976; 433:118–132
    [Google Scholar]
  13. Cohen S. P., McMurry L. M., Levy S. B. mar A locus causes decreased expression of OmpF porin in multiple-antibiotic-resistant (Mar) mutants of Escherichia coli. J Bacteriol 1988; 170:5416–5422
    [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature 1970; 227:680–685
    [Google Scholar]
  15. Nesterenko M. V., Tilley M., Upton S. J. A simple modification of Blum’s silver stain method allows for 30 minute detection of proteins in polyacrylamide gels. J Biochem Biophys Methods 1994; 28:239–242
    [Google Scholar]
  16. Abadi F. J. R., Carter P. E., Cash P., Pennington T. H. Rifampicin resistance in Neisseria meningitidis due to alterations in membrane permeability. Antimicrob Agents Chemother 1996; 40:646–651
    [Google Scholar]
  17. Fukuda H., Hosaka M., Hirai K., Iyobe S. New norfloxacin resistance gene in Pseudomonas aeruginosa PAO. Antimicrob Agents Chemother 1990; 34:1757–1761
    [Google Scholar]
  18. Hirai K., Suzue S., Irikua T., Iyobe S., Mitsuhashi S. Mutations producing resistance to norfloxacin in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1987; 31:582–586
    [Google Scholar]
  19. Poole K., Krebes K., McNally C., Neshat S. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol 1993; 175:7363–7372
    [Google Scholar]
  20. Nikaido H. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 1994; 264:382–388
    [Google Scholar]
  21. Grinius L. L., Goldberg E. B. Bacterial multidrug resistance is due to a single membrane protein which functions as a drug pump. J Biol Chem 1994; 269:29998–30004
    [Google Scholar]
  22. Paulsen I. T., Brown M. H., Skurray R. A. Proton-dependent multidrug efflux systems. Microbiol Rev 1996; 60:575–608
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-47-3-197
Loading
/content/journal/jmm/10.1099/00222615-47-3-197
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error