1887

Abstract

is an opportunistic pathogen associated with pulmonary disease in non-AIDS patients and disseminated infection in patients with AIDS. The chief route of infection is by colonization and invasion of the mucosa of the gastrointestinal tract, but infection through the respiratory route also occurs. After crossing the mucosa, infects and replicates within tissue macrophages. To identify genes required for survival , a library of signature-tagged transposon mutants was constructed and screened for clones attenuated in mice. Thirty-two clones were found to be attenuated for their virulence, from which eleven were sequenced and tested further. All the mutants studied grew similarly to the wild-type MAC104. Ten mutants were tested individually in mice, confirming the attenuated phenotype. MAV_2450, a polyketide synthase homologue to pks12, was identified. STM5 and STM10 genes (encoding two hypothetical proteins MAV_4292 and MAV_4012) were associated with susceptibility to oxidative products. Mutants MAV_2450, MAV_4292, MAV_0385 and MAV_4264 live in macrophage vacuoles with acidic pH (below 6.9). Mutants MAV_4292, MAV_0385 and MAV_4264 were susceptible to nitric oxide . The study of individual mutants can potentially lead to new knowledge about pathogenic mechanisms.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.012864-0
2010-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/1/8.html?itemId=/content/journal/jmm/10.1099/jmm.0.012864-0&mimeType=html&fmt=ahah

References

  1. Appelberg R., Orme I. M. 1993; Effector mechanisms involved in cytokine-mediated bacteriostasis of Mycobacterium avium infections in murine macrophages. Immunology 80:352–359
    [Google Scholar]
  2. Bermudez L. E. 1993; Differential mechanisms of intracellular killing of Mycobacterium avium and Listeria monocytogenes by activated human and murine macrophages. The role of nitric oxide. Clin Exp Immunol 91:277–281
    [Google Scholar]
  3. Bermudez L. E., Young L. S. 1989; Oxidative and non-oxidative intracellular killing of Mycobacterium avium complex. Microb Pathog 7:289–298 [CrossRef]
    [Google Scholar]
  4. Bermudez L. E., Petrofsky M., Kolonoski P., Young L. S. 1992; An animal model of Mycobacterium avium complex disseminated infection after colonization of the intestinal tract. J Infect Dis 165:75–79 [CrossRef]
    [Google Scholar]
  5. Bermudez L. E., Parker A., Goodman J. R. 1997; Growth within macrophages increases the efficiency of Mycobacterium avium in invading other macrophages by a complement receptor-independent pathway. Infect Immun 65:1916–1925
    [Google Scholar]
  6. Bermudez L. E., Kolonoski P., Wu M., Aralar P. A., Inderlied C. B., Young L. S. 1999; Mefloquine is active in vitro and in vivo against Mycobacterium avium complex. Antimicrob Agents Chemother 43:1870–1874
    [Google Scholar]
  7. Bermudez L. E., Petrofsky M., Sangari F. 2004; Intracellular phenotype of Mycobacterium avium enters macrophages primarily by a macropinocytosis-like mechanism and survives in a compartment that differs from that with extracellular phenotype. Cell Biol Int 28:411–419 [CrossRef]
    [Google Scholar]
  8. Camacho L. R., Ensergueix D., Perez E., Gicquel B., Guilhot C. 1999; Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol 34:257–267 [CrossRef]
    [Google Scholar]
  9. Camacho L. R., Constant P., Raynaud C., Laneelle M. A., Triccas J. A., Gicquel B., Daffe M., Guilhot C. 2001; Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis . Evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem 276:19845–19854 [CrossRef]
    [Google Scholar]
  10. Chan J., Xing Y., Magliozzo R. S., Bloom B. R. 1992; Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J Exp Med 175:1111–1122 [CrossRef]
    [Google Scholar]
  11. Clay H., Davis J. M., Beery D., Huttenlocher A., Lyons S. E., Ramakrishnan L. 2007; Dichotomous role of the macrophage in early Mycobacterium marinum infection of the Zebrafish. Cell Host Microbe 2:29–39 [CrossRef]
    [Google Scholar]
  12. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S. other authors 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  13. Converse S. E., Mougous J. D., Leavell M. D., Leary J. A., Bertozzi C. R., Cox J. S. 2003; MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proc Natl Acad Sci U S A 100:6121–6126 [CrossRef]
    [Google Scholar]
  14. Cooper A. M., Pearl J. E., Brooks J. V., Ehlers S., Orme I. M. 2000; Expression of the nitric oxide synthase 2 gene is not essential for early control of Mycobacterium tuberculosis in the murine lung. Infect Immun 68:6879–6882 [CrossRef]
    [Google Scholar]
  15. Cox J. S., Chen B., McNeil M., Jacobs W. R. Jr 1999; Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402:79–83 [CrossRef]
    [Google Scholar]
  16. Crowle A. J., Dahl R., Ross E., May M. H. 1991; Evidence that vesicles containing living, virulent Mycobacterium tuberculosis or Mycobacterium avium in cultured human macrophages are not acidic. Infect Immun 59:1823–1831
    [Google Scholar]
  17. Dam T., Danelishvili L., Wu M., Bermudez L. E. 2006; The fadD2 gene is required for efficient Mycobacterium avium invasion of mucosal epithelial cells. J Infect Dis 193:1135–1142 [CrossRef]
    [Google Scholar]
  18. Danelishvili L., Poort M. J., Bermudez L. E. 2004; Identification of Mycobacterium avium genes up-regulated in cultured macrophages and in mice. FEMS Microbiol Lett 239:41–49 [CrossRef]
    [Google Scholar]
  19. Delogu G., Brennan M. J. 2001; Comparative immune response to PE and PE_PGRS antigens of Mycobacterium tuberculosis . Infect Immun 69:5606–5611 [CrossRef]
    [Google Scholar]
  20. Delogu G., Sanguinetti M., Pusceddu C., Bua A., Brennan M. J., Zanetti S., Fadda G. 2006; PE_PGRS proteins are differentially expressed by Mycobacterium tuberculosis in host tissues. Microbes Infect 8:2061–2067 [CrossRef]
    [Google Scholar]
  21. Dheenadhayalan V., Delogu G., Brennan M. J. 2006a; Expression of the PE_PGRS 33 protein in Mycobacterium smegmatis triggers necrosis in macrophages and enhanced mycobacterial survival. Microbes Infect 8:262–272 [CrossRef]
    [Google Scholar]
  22. Dheenadhayalan V., Delogu G., Sanguinetti M., Fadda G., Brennan M. J. 2006b; Variable expression patterns of Mycobacterium tuberculosis PE_PGRS genes: evidence that PE_PGRS16 and PE_PGRS26 are inversely regulated in vivo . J Bacteriol 188:3721–3725 [CrossRef]
    [Google Scholar]
  23. Domenech P., Reed M. B., Dowd C. S., Manca C., Kaplan G., Barry C. E. III 2004; The role of MmpL8 in sulfatide biogenesis and virulence of Mycobacterium tuberculosis . J Biol Chem 279:21257–21265 [CrossRef]
    [Google Scholar]
  24. Dubnau E., Fontan P., Manganelli R., Soares-Appel S., Smith I. 2002; Mycobacterium tuberculosis genes induced during infection of human macrophages. Infect Immun 70:2787–2795 [CrossRef]
    [Google Scholar]
  25. Falkinham J. O. III 1996; Epidemiology of infection by nontuberculous mycobacteria. Clin Microbiol Rev 9:177–215
    [Google Scholar]
  26. Gomes M. S., Florido M., Pais T. F., Appelberg R. 1999; Improved clearance of Mycobacterium avium upon disruption of the inducible nitric oxide synthase gene. J Immunol 162:6734–6739
    [Google Scholar]
  27. Gunzel D., Kucharski L. M., Kehres D. G., Romero M. F., Maguire M. E. 2006; The MgtC virulence factor of Salmonella enterica serovar Typhimurium activates Na+,K+-ATPase. J Bacteriol 188:5586–5594 [CrossRef]
    [Google Scholar]
  28. Hahn M. Y., Raman S., Anaya M., Husson R. N. 2005; The Mycobacterium tuberculosis extracytoplasmic-function sigma factor SigL regulates polyketide synthases and secreted or membrane proteins and is required for virulence. J Bacteriol 187:7062–7071 [CrossRef]
    [Google Scholar]
  29. Hensel M., Shea J. E., Gleeson C., Jones M. D., Dalton E., Holden D. W. 1995; Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400–403 [CrossRef]
    [Google Scholar]
  30. Honer Zu Bentrup K., Miczak A., Swenson D. L., Russell D. G. 1999; Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis . J Bacteriol 181:7161–7167
    [Google Scholar]
  31. Hou J. Y., Graham J. E., Clark-Curtiss J. E. 2002; Mycobacterium avium genes expressed during growth in human macrophages detected by selective capture of transcribed sequences (SCOTS. Infect Immun 70:3714–3726 [CrossRef]
    [Google Scholar]
  32. Inderlied C. B., Kemper C. A., Bermudez L. E. 1993; The Mycobacterium avium complex. Clin Microbiol Rev 6:266–310
    [Google Scholar]
  33. Jain M., Cox J. S. 2005; Interaction between polyketide synthase and transporter suggests coupled synthesis and export of virulence lipid in M. tuberculosis . PLoS Pathog 1:e2 [CrossRef]
    [Google Scholar]
  34. Krzywinska E., Bhatnagar S., Sweet L., Chatterjee D., Schorey J. S. 2005; Mycobacterium avium 104 deleted of the methyltransferase D gene by allelic replacement lacks serotype-specific glycopeptidolipids and shows attenuated virulence in mice. Mol Microbiol 56:1262–1273 [CrossRef]
    [Google Scholar]
  35. Li Y., Miltner E., Wu M., Petrofsky M., Bermudez L. E. 2005; A Mycobacterium avium PPE gene is associated with the ability of the bacterium to grow in macrophages and virulence in mice. Cell Microbiol 7:539–548
    [Google Scholar]
  36. Miltner E., Daroogheh K., Mehta P. K., Cirillo S. L., Cirillo J. D., Bermudez L. E. 2005; Identification of Mycobacterium avium genes that affect invasion of the intestinal epithelium. Infect Immun 73:4214–4221 [CrossRef]
    [Google Scholar]
  37. Ojha A., Anand M., Bhatt A., Kremer L., Jacobs W. R. Jr, Hatfull G. F. 2005; GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123:861–873 [CrossRef]
    [Google Scholar]
  38. Patel D., Danelishvili L., Yamazaki Y., Alonso M., Paustian M. L., Bannantine J. P., Meunier-Goddik L., Bermudez L. E. 2006; The ability of Mycobacterium avium subsp. paratuberculosis to enter bovine epithelial cells is influenced by preexposure to a hyperosmolar environment and intracellular passage in bovine mammary epithelial cells. Infect Immun 74:2849–2855 [CrossRef]
    [Google Scholar]
  39. Petrofsky M., Bermudez L. E. 2005; CD4+ T cells but not CD8+ or γδ + lymphocytes are required for host protection against Mycobacterium avium infection and dissemination through the intestinal route. Infect Immun 73:2621–2627 [CrossRef]
    [Google Scholar]
  40. Ramakrishnan L., Federspiel N. A., Falkow S. 2000; Granuloma-specific expression of Mycobacterium virulence proteins from the glycine-rich PE-PGRS family. Science 288:1436–1439 [CrossRef]
    [Google Scholar]
  41. Sangari F. J., Goodman J., Bermudez L. E. 2000; Mycobacterium avium enters intestinal epithelial cells through the apical membrane, but not by the basolateral surface, activates small GTPase Rho and, once within epithelial cells, expresses an invasive phenotype. Cell Microbiol 2:561–568 [CrossRef]
    [Google Scholar]
  42. Sarmento A., Appelberg R. 1996; Involvement of reactive oxygen intermediates in tumor necrosis factor α -dependent bacteriostasis of Mycobacterium avium . Infect Immun 64:3224–3230
    [Google Scholar]
  43. Sirakova T. D., Dubey V. S., Kim H. J., Cynamon M. H., Kolattukudy P. E. 2003; The largest open reading frame (pks12) in the Mycobacterium tuberculosis genome is involved in pathogenesis and dimycocerosyl phthiocerol synthesis. Infect Immun 71:3794–3801 [CrossRef]
    [Google Scholar]
  44. Sturgill-Koszycki S., Schlesinger P. H., Chakraborty P., Haddix P. L., Collins H. L., Fok A. K., Allen R. D., Gluck S. L., Heuser J., Russell D. G. 1994; Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263:678–681 [CrossRef]
    [Google Scholar]
  45. Via L. E., Deretic D., Ulmer R. J., Hibler N. S., Huber L. A., Deretic V. 1997; Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by rab5 and rab7. J Biol Chem 272:13326–13331 [CrossRef]
    [Google Scholar]
  46. Wagner D., Maser J., Lai B., Cai Z., Barry C. E. III, Honer Zu Bentrup K., Russell D. G., Bermudez L. E. 2005; Elemental analysis of Mycobacterium avium -, Mycobacterium tuberculosis -, and Mycobacterium smegmatis -containing phagosomes indicates pathogen-induced microenvironments within the host cell's endosomal system. J Immunol 174:1491–1500 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.012864-0
Loading
/content/journal/jmm/10.1099/jmm.0.012864-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error