1887

Abstract

species are facultative, intracellular bacteria that infect macrophages and protozoa, with the latter acting as transmission vectors to humans. These fastidious bacteria mostly cause pulmonary tract infections and are routinely identified by various molecular methods, mainly PCR targeting the gene and sequencing, which are expensive and time-consuming. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) has emerged as a rapid and inexpensive method for identification of bacterial species. This study evaluated the use of MALDI-TOF-MS for rapid species and serogroup identification of 21 species recognized as human pathogens. To this end, a reference MS database was developed including 59 type strains, and a blind test was performed using 237 strains from various species. Two hundred and twenty-three of the 237 strains (94.1 %) were correctly identified at the species level, although ten (4.2 %) were identified with a score lower than 2.0. Fourteen strains (5.9 %) from eight species were misidentified at the species level, including seven (3.0 %) with a significant score, suggesting an intraspecific variability of protein profiles within some species. MALDI-TOF-MS was reproducible but could not identify strains at the serogroup level. When compared with gene sequencing, MALDI-TOF-MS exhibited a sensitivity of 99.2 and 89.9 % for the identification of strains at the genus and species level, respectively. This study demonstrated that MALDI-TOF-MS is a reliable tool for the rapid identification of strains at the species level.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.014100-0
2010-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/3/273.html?itemId=/content/journal/jmm/10.1099/jmm.0.014100-0&mimeType=html&fmt=ahah

References

  1. Adeleke A., Pruckler J., Benson R., Rowbotham T., Halablab M., Fields B. 1996; Legionella -like amebal pathogens – phylogenetic status and possible role in respiratory disease. Emerg Infect Dis 2:225–230 [CrossRef]
    [Google Scholar]
  2. Barbuddhe S. B., Maier T., Schwarz G., Kostrzewa M., Hof H., Domann E., Chakraborty T., Hain T. 2008; Rapid identification and typing of Listeria species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 74:5402–5407 [CrossRef]
    [Google Scholar]
  3. Benson R. F., Fields B. S. 1998; Classification of the genus Legionella . Semin Respir Infect 13:90–99
    [Google Scholar]
  4. Carbonnelle E., Beretti J. L., Cottyn S., Quesne G., Berche P., Nassif X., Ferroni A. 2007; Rapid identification of staphylococci isolated in clinical microbiology laboratories by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 45:2156–2161 [CrossRef]
    [Google Scholar]
  5. Degand N., Carbonnelle E., Dauphin B., Beretti J. L., Le Bourgeois M., Sermet-Gaudelus I., Segonds C., Berche P., Nassif X., Ferroni A. 2008; Matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of nonfermenting Gram-negative bacilli isolated from cystic fibrosis patients. J Clin Microbiol 46:3361–3367 [CrossRef]
    [Google Scholar]
  6. De Gheldre Y., Maes N., Presti F. L., Etienne J., Struelens M. 2001; Rapid identification of clinically relevant Legionella spp. by analysis of transfer DNA intergenic spacer length polymorphism. J Clin Microbiol 39:162–169 [CrossRef]
    [Google Scholar]
  7. Dieckmann R., Helmuth R., Erhard M., Malorny B. 2008; Rapid classification and identification of salmonellae at the species and subspecies levels by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 74:7767–7778 [CrossRef]
    [Google Scholar]
  8. Fournier P. E., Couderc C., Buffet S., Flaudrops C., Raoult D. 2009; Rapid and cost-effective identification of Bartonella species using mass spectrometry. J Med Microbiol 58:1154–1159 [CrossRef]
    [Google Scholar]
  9. Friedrichs C., Rodloff A. C., Chhatwal G. S., Schellenberger W., Eschrich K. 2007; Rapid identification of viridans streptococci by mass spectrometric discrimination. J Clin Microbiol 45:2392–2397 [CrossRef]
    [Google Scholar]
  10. Garrity G. M., Bell J. A., Lilburn T. 2005; Order VI Legionellales ord. nov . In Bergey's Manual of Systematic Bacteriology pp 210–236 Edited by Brenner D. J., Krieg N. R., Staley J. J., Garrity G. M. New York: Springer;
    [Google Scholar]
  11. Grattard F., Ginevra C., Riffard S., Ros A., Jarraud S., Etienne J., Pozzetto B. 2006; Analysis of the genetic diversity of Legionella by sequencing the 23S–5S ribosomal intergenic spacer region: from phylogeny to direct identification of isolates at the species level from clinical specimens. Microbes Infect 8:73–83 [CrossRef]
    [Google Scholar]
  12. Grosse-Herrenthey A., Maier T., Gessler F., Schaumann R., Bohnel H., Kostrzewa M., Kruger M. 2008; Challenging the problem of clostridial identification with matrix-assisted laser desorption and ionization-time-of-flight mass spectrometry (MALDI-TOF MS. Anaerobe 14:242–249 [CrossRef]
    [Google Scholar]
  13. Gudlavalleti S. K., Sundaram A. K., Razumovski J., Doroshenko V. 2008; Application of atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry for rapid identification of Neisseria species. J Biomol Tech 19:200–204
    [Google Scholar]
  14. Hacker J., Fischer G. 1993; Immunophilins: structure–function relationship and possible role in microbial pathogenicity. Mol Microbiol 10:445–456 [CrossRef]
    [Google Scholar]
  15. Hsieh S. Y., Tseng C. L., Lee Y. S., Kuo A. J., Sun C. F., Lin Y. H., Chen J. K. 2008; Highly efficient classification and identification of human pathogenic bacteria by MALDI-TOF MS. Mol Cell Proteomics 7:448–456
    [Google Scholar]
  16. Ilina E. N., Borovskaya A. D., Malakhova M. M., Vereshchagin V. A., Kubanova A. A., Kruglov A. N., Svistunova T. S., Gazarian A. O., Maier T. other authors 2009; Direct bacterial profiling by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry for identification of pathogenic Neisseria . J Mol Diagn 11:75–86 [CrossRef]
    [Google Scholar]
  17. Ko K. S., Lee H. K., Park M. Y., Lee K. H., Yun Y. J., Woo S. Y., Miyamoto H., Kook Y. H. 2002; Application of RNA polymerase β -subunit gene ( rpoB ) sequences for the molecular differentiation of Legionella species. J Clin Microbiol 40:2653–2658 [CrossRef]
    [Google Scholar]
  18. Kolinska R., Drevinek M., Jakubu V., Zemlickova H. 2008; Species identification of Campylobacter jejuni ssp. jejuni and C. coli by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and PCR. Folia Microbiol (Praha 53:403–409 [CrossRef]
    [Google Scholar]
  19. Mellmann A., Cloud J., Maier T., Keckevoet U., Ramminger I., Iwen P., Dunn J., Hall G., Wilson D. other authors 2008; Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J Clin Microbiol 46:1946–1954 [CrossRef]
    [Google Scholar]
  20. Miñán A., Bosch A., Lasch P., Stämmler M., Serra D. O., Degrossi J., Gatti B., Vay C., Daquino M. other authors 2009; Rapid identification of Burkholderia cepacia complex species including strains of the novel Taxon K, recovered from cystic fibrosis patients by intact cell MALDI-ToF mass spectrometry. Analyst 134:1138–1148 [CrossRef]
    [Google Scholar]
  21. Nagy E., Maier T., Urban E., Terhes G., Kostrzewa M. ESCMID Study Group on Antimicrobial Resistance in Anaerobic Bacteria 2009; Species identification of clinical isolates of Bacteroides by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry. Clin Microbiol Infect 15:796–802 [CrossRef]
    [Google Scholar]
  22. Parisi D., Magliulo M., Nanni P., Casale M., Forina M., Roda A. 2008; Analysis and classification of bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and a chemometric approach. Anal Bioanal Chem 391:2127–2134 [CrossRef]
    [Google Scholar]
  23. Ratcliff R. M., Lanser J. A., Manning P. A., Heuzenroeder M. W. 1998; Sequence-based classification scheme for the genus Legionella targeting the mip gene. J Clin Microbiol 36:1560–1567
    [Google Scholar]
  24. Riffard S., Lo P. F., Normand P., Forey F., Reyrolle M., Etienne J., Vandenesch F. 1998; Species identification of Legionella via intergenic 16S–23S ribosomal spacer PCR analysis. Int J Syst Bacteriol 48:723–730 [CrossRef]
    [Google Scholar]
  25. Ruelle V., El M. B., Zorzi W., Ledent P., Pauw E. D. 2004; Rapid identification of environmental bacterial strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 18:2013–2019 [CrossRef]
    [Google Scholar]
  26. Salloum G., Meugnier H., Reyrolle M., Grimont F., Grimont P. A., Etienne J., Freney J. 2002; Identification of Legionella species by ribotyping and other molecular methods. Res Microbiol 153:679–686 [CrossRef]
    [Google Scholar]
  27. Sauer S., Freiwald A., Maier T., Kube M., Reinhardt R., Kostrzewa M., Geider K. 2008; Classification and identification of bacteria by mass spectrometry and computational analysis. PLoS One 3:e2843 [CrossRef]
    [Google Scholar]
  28. Skultety L., Hernychova L., Bereghazyova E., Slaba K., Toman R. 2007; Detection of specific spectral markers of Coxiella burnetii isolates by MALDI-TOF mass spectrometry. Acta Virol 51:55–58
    [Google Scholar]
  29. Stingu C. S., Rodloff A. C., Jentsch H., Schaumann R., Eschrich K. 2008; Rapid identification of oral anaerobic bacteria cultivated from subgingival biofilm by MALDI-TOF-MS. Oral Microbiol Immunol 23:372–376 [CrossRef]
    [Google Scholar]
  30. Van Belkum A., Struelens M., Quint W. 1993; Typing of Legionella pneumophila strains by polymerase chain reaction-mediated DNA fingerprinting. J Clin Microbiol 31:2198–2200
    [Google Scholar]
  31. Vanlaere E., Sergeant K., Dawyndt P., Kallow W., Erhard M., Sutton H., Dare D., Devreese B., Samyn B., Vandamme P. 2008; Matrix-assisted laser desorption ionisation-time-of of-flight mass spectrometry of intact cells allows rapid identification of Burkholderia cepacia complex. J Microbiol Methods 75:279–286 [CrossRef]
    [Google Scholar]
  32. Vargha M., Takats Z., Konopka A., Nakatsu C. H. 2006; Optimization of MALDI-TOF MS for strain level differentiation of Arthrobacter isolates. J Microbiol Methods 66:399–409 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.014100-0
Loading
/content/journal/jmm/10.1099/jmm.0.014100-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error