1887

Abstract

Chronic respiratory infection by contributessignificantly to the morbidity and mortality associated with cystic fibrosis (CF).Using a series of phenotypic and genotypic tests on collections of 40 isolatesper sputum sample, we analysed fluctuations within sputum populations of the Liverpool epidemic strain (LES) during pulmonaryexacerbations. For each of three patients, three sequential sputum sampleswere analysed: (1) on presentation with exacerbation at the RegionalAdult Cystic Fibrosis Unit, Liverpool; (2) a few days into intravenousantibiotic treatment; (3) when the patient had recovered. Fluctuationswere observed in morphotype distribution, the production of virulence-associatedquorum-sensing-dependent exoproducts (the phenazine compound pyocyaninand the elastase LasA), antibiotic susceptibility profiles and levelsof auxotrophy. PCR assays were used to screen isolates for the presence ofnovel regions of the LES genome (islands and prophages) and to detectfree phages. In one patient there was an increase in the prevalence of theLESGI-5 genomic island during the sampling period from 10 to 97.5 %carriage. LES phages 2–4 were detected in either the majority or allsputum samples tested, indicating widespread phage activity during the samplingperiod. The results of this study are indicative that significant fluctuationsoccur within populations during short periods of pulmonaryexacerbation and intravenous antibiotic therapy.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.015875-0
2010-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/4/472.html?itemId=/content/journal/jmm/10.1099/jmm.0.015875-0&mimeType=html&fmt=ahah

References

  1. Al-Aloul M., Crawley J., Winstanley C., Hart C. A., Ledson M. J., Walshaw M. J. 2004; Increased morbidityassociated with chronic infection by an epidemic Pseudomonas aeruginosa strain in CF patients. Thorax 59:334–336 [CrossRef]
    [Google Scholar]
  2. Andrews J. M. for the BSAC Working Party on SusceptibilityTesting. 2001; BSAC standardized disc susceptibilitytesting method. J Antimicrob Chemother 48 (Suppl. S1):43–57 [CrossRef]
    [Google Scholar]
  3. Blahova J., Hupkova M., Krcmery V. Sr 1994; Phage F-116 transduction of antibiotic resistance from aclinical isolate of Pseudomonas aeruginosa . J Chemother 6:184–188
    [Google Scholar]
  4. Blahova J., Kralikova K., Krcmery V., Jezek P. 2000; Low-frequency transduction of imipenem resistanceand high-frequency transduction of ceftazidime and aztreonam resistance bythe bacteriophage AP-151 isolated from a Pseudomonas aeruginosa strain. J Chemother 12:482–486 [CrossRef]
    [Google Scholar]
  5. Boles B. R., Singh P. K. 2008; Endogenous oxidative stress produces diversity and adaptability in biofilmcommunities. Proc Natl Acad Sci U S A 105:12503–12508 [CrossRef]
    [Google Scholar]
  6. Cabral D. A., Loh B. A., Speert D. P. 1987; Mucoid Pseudomonas aeruginosa resists nonopsonicphagocytosis by human neutrophils and macrophages. Pediatr Res 22:429–431 [CrossRef]
    [Google Scholar]
  7. Cheng K., Smyth R. L., Govan J. R., Doherty C., Winstanley C., Denning N., Heaf D. P., van Saene H., Hart C. A. 1996; Spread of β -lactam-resistant Pseudomonasaeruginosa in a cystic fibrosis clinic. Lancet 348:639–642 [CrossRef]
    [Google Scholar]
  8. Ciofu O., Riis B., Pressler T., Poulsen H. E., Høiby N. 2005; Occurrence of hypermutable Pseudomonasaeruginosa in cystic fibrosis patients is associated with the oxidativestress caused by chronic lung inflammation. Antimicrob Agents Chemother 49:2276–2282 [CrossRef]
    [Google Scholar]
  9. De Vos D., Lim A. Jr, Pirnay J. P., Duinslaeger L., Revets H., Vanderkelen A., Hamers R., Cornelis P. 1997; Analysis of epidemic Pseudomonas aeruginosa isolates by isoelectricfocusing of pyoverdine and RAPD-PCR: modern tools for an integrated anti-nosocomialinfection strategy in burn wound centres. Burns 23:379–386 [CrossRef]
    [Google Scholar]
  10. Etherington C., Hall M., Conway S., Peckham D., Denton M. 2008; Clinical impact of reducing routine susceptibilitytesting in chronic Pseudomonas aeruginosa infections in cystic fibrosis. J Antimicrob Chemother 61:425–427
    [Google Scholar]
  11. Fothergill J. L., Panagea S., Hart C. A., Walshaw M. J., Pitt T. L., Winstanley C. 2007; Widespreadpyocyanin over-production among isolates of a cystic fibrosis epidemic strain. BMC Microbiol 7:45 [CrossRef]
    [Google Scholar]
  12. Foweraker J. E., Laughton C. R., Brown D. F., Bilton D. 2005; Phenotypic variability of Pseudomonasaeruginosa in sputa from patients with acute infective exacerbation ofcystic fibrosis and its impact on the validity of antimicrobial susceptibilitytesting. J Antimicrob Chemother 55:921–927 [CrossRef]
    [Google Scholar]
  13. Goss C. H., Burns J. L. 2007).Exacerbations; in cystic fibrosis 1: epidemiology and pathogenesis. Thorax 62:360–367 [CrossRef]
    [Google Scholar]
  14. Govan J. R., Fyfe J. A. 1978).Mucoid; Pseudomonas aeruginosa and cystic fibrosis: resistance ofthe mucoid from to carbenicillin, flucloxacillin and tobramycin and the isolationof mucoid variants in vitro. J Antimicrob Chemother 4:233–240 [CrossRef]
    [Google Scholar]
  15. Guzel C. B., Gerceker A. A. 2008; In vitro activities of various antibiotics, alone and in combinationwith colistin methanesulfonate, against Pseudomonas aeruginosa strainsisolated from cystic fibrosis patients. Chemotherapy 54:147–151 [CrossRef]
    [Google Scholar]
  16. Hart C. A., Winstanley C. 2002; Persistent and aggressive bacteria in the lungs of cystic fibrosis children. Br Med Bull 61:81–96 [CrossRef]
    [Google Scholar]
  17. Hyatt J. M., Schentag J. J. 2000; Pharmacodynamic modeling of risk factors for ciprofloxacin resistancein Pseudomonas aeruginosa . Infect Control Hosp Epidemiol 21:S9–S11 [CrossRef]
    [Google Scholar]
  18. Kessler E., Safrin M., Blumberg S., Ohman D. E. 2004; A continuous spectrophotometric assay for Pseudomonasaeruginosa LasA protease (staphylolysin) using a two-stageenzymatic reaction. Anal Biochem 328:225–232 [CrossRef]
    [Google Scholar]
  19. LiPuma J. J. 2001; Microbiologicaland immunologic considerations with aerosolized drug delivery. Chest 120:118S–123S [CrossRef]
    [Google Scholar]
  20. Macia M. D., Mena A., Borrell N., Perez J. L., Oliver A. 2007; Increased susceptibility to colistin inhypermutable Pseudomonas aeruginosa strains from chronic respiratoryinfection. Antimicrob Agents Chemother 51:4531–4532 [CrossRef]
    [Google Scholar]
  21. Mathee K., Ciofu O., Sternberg C., Lindum P. W., Campbell J. I., Jensen P., Johnsen A. H., Givskov M., Ohman D. E. other authors 1999; Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cysticfibrosis lung. Microbiology 145:1349–1357 [CrossRef]
    [Google Scholar]
  22. McCallum S. J., Gallagher M. J., Corkill J. E., Hart C.A., Ledson M. J., Walshaw M. J. 2002; Spreadof an epidemic Pseudomonas aeruginosa strain from a patient withcystic fibrosis (CF) to non-CF relatives. Thorax 57:559–560 [CrossRef]
    [Google Scholar]
  23. McGrath L. T., Mallon P., Dowey L., Silke B., McClean E., McDonnell M., Devine A., Copeland S., Elborn S. 1999; Oxidative stress during acute respiratory exacerbations in cysticfibrosis. Thorax 54:518–523 [CrossRef]
    [Google Scholar]
  24. Mohan K., Fothergill J. L., Storrar J., Ledson M. J., Winstanley C., Walshaw M. J. 2008; Transmission of Pseudomonas aeruginosa epidemic strain from a patient with cystic fibrosisto a pet cat. Thorax 63:839–840 [CrossRef]
    [Google Scholar]
  25. Montanari S., Oliver A., Salerno P., Mena A., Bertoni G., Tümmler B., Cariani L., Conese M., Döring G., Bragonzi A. 2007; Biological cost of hypermutation in Pseudomonas aeruginosa strains from patients with cystic fibrosis. Microbiology 153:1445–1454 [CrossRef]
    [Google Scholar]
  26. Moriarty T. F., McElnay J. C., Elborn J. S., Tunney M. M. 2007; Sputum antibiotic concentrations: implicationsfor treatment of cystic fibrosis lung infection. Pediatr Pulmonol 42:1008–1017 [CrossRef]
    [Google Scholar]
  27. Nakajima A., Sugimoto Y., Yoneyama H., Nakae T. 2002; High-level fluoroquinolone resistance in Pseudomonasaeruginosa due to interplay of the MexAB-OprM efflux pump and the DNAgyrase mutation. Microbiol Immunol 46:391–395 [CrossRef]
    [Google Scholar]
  28. Niga T., Ito H., Oyamada Y., Yamagishi J., Kadono M., Nishino T., Gotoh N., Inoue M. 2005; Cooperationbetween alteration of DNA gyrase genes and over-expression of MexB and MexXconfers high-level fluoroquinolone resistance in Pseudomonas aeruginosa strains isolated from a patient who received a liver transplant followedby treatment with fluoroquinolones. Microbiol Immunol 49:443–446 [CrossRef]
    [Google Scholar]
  29. Oliver A. 2004; Carbapenem resistanceand Acinetobacter baumannii . Enferm Infecc Microbiol Clin 22:259–261 [CrossRef]
    [Google Scholar]
  30. Oliver A., Canton R., Campo P., Baquero F., Blazquez J. 2000; High frequency of hypermutable Pseudomonasaeruginosa in cystic fibrosis lung infection. Science 288:1251–1254 [CrossRef]
    [Google Scholar]
  31. Parsons Y. N., Panagea S., Smart C. H., Walshaw M. J., Hart C. A., Winstanley C. 2002; Use of subtractivehybridization to identify a diagnostic probe for a cystic fibrosis epidemicstrain of Pseudomonas aeruginosa . J Clin Microbiol 40:4607–4611 [CrossRef]
    [Google Scholar]
  32. Plasencia V., Borrell N., Macia M. D., Moya B., Perez J.L., Oliver A. 2007; Influence of high mutationrates on the mechanisms and dynamics of in vitro and in vivo resistance developmentto single or combined antipseudomonal agents. Antimicrob AgentsChemother 51:2574–2581
    [Google Scholar]
  33. Regelmann W. E., Elliott G. R., Warwick W. J., Clawson C. C. 1990; Reduction of sputum Pseudomonasaeruginosa density by antibiotics improves lung function in cystic fibrosismore than do bronchodilators and chest physiotherapy alone. AmRev Respir Dis 141:914–921
    [Google Scholar]
  34. Rolain J. M., Francois P., Hernandez D., Bittar F., Richet H., Fournous G., Mattenberger Y., Bosdure E., Stremler N., otherauthors. 2009; Genomic analysis of an emerging multiresistant Staphylococcus aureus strain rapidly spreading in cystic fibrosis patientsrevealed the presence of an antibiotic inducible bacteriophage. Biol Direct 4:1 [CrossRef]
    [Google Scholar]
  35. Salunkhe P., Smart C. H., Morgan J. A., Panagea S., Walshaw M. J., Hart C. A., Geffers R., Tummler B., Winstanley C. 2005; A cystic fibrosis epidemic strain of Pseudomonasaeruginosa displays enhanced virulence and antimicrobial resistance. J Bacteriol 187:4908–4920 [CrossRef]
    [Google Scholar]
  36. Scott F. W., Pitt T. L. 2004).Identification; and characterization of transmissible Pseudomonas aeruginosa strains in cystic fibrosis patients in England and Wales. J Med Microbiol 53:609–615 [CrossRef]
    [Google Scholar]
  37. Selva L., Viana D., Regev-Yochay G., Trzcinski K., Corpa J. M., Lasa I., Novick R. P., Penades J. R. 2009; Killing niche competitors by remote-control bacteriophage induction. Proc Natl Acad Sci U S A 106:1234–1238 [CrossRef]
    [Google Scholar]
  38. Skindersoe M. E., Alhede M., Phipps R., Yang L., Jensen P. O., Rasmussen T. B., Bjarnsholt T., Tolker-Nielsen T., Høiby N., Givskov M. 2008; Effects of antibioticson quorum sensing in Pseudomonas aeruginosa . AntimicrobAgents Chemother 52:3648–3663
    [Google Scholar]
  39. Smart C. H., Walshaw M. J., Hart C. A., Winstanley C. 2006; Use of suppression subtractive hybridizationto examine the accessory genome of the Liverpool cystic fibrosis epidemicstrain of Pseudomonas aeruginosa . J Med Microbiol 55:677–688 [CrossRef]
    [Google Scholar]
  40. Smith A. L., Fiel S. B., Mayer-Hamblett N, Ramsey B, Burns J. L. 2003; Susceptibility testing of Pseudomonas aeruginosa isolates and clinical response to parenteral antibioticadministration: lack of association in cystic fibrosis. Chest 123:1495–1502 [CrossRef]
    [Google Scholar]
  41. Smith E. E., Buckley D. G., Wu Z., Saenphimmachak C., Hoffman L. R., D'Argenio D. A., Miller S. I., Ramsey B. W., Speert D. P. &other authors; 2006; Genetic adaptation by Pseudomonasaeruginosa to the airways of cystic fibrosis patients. ProcNatl Acad Sci U S A 103:8487–8492
    [Google Scholar]
  42. Thomas S. R., Ray A., Hodson M. E., Pitt T. L. 2000; Increased sputum amino acid concentrations and auxotrophyof Pseudomonas aeruginosa in severe cystic fibrosis lung disease. Thorax 55:795–797 [CrossRef]
    [Google Scholar]
  43. Winstanley C., Fothergill J. L. 2009; The role of quorum sensing in chronic cystic fibrosis Pseudomonasaeruginosa infections. FEMS Microbiol Lett 290:1–9 [CrossRef]
    [Google Scholar]
  44. Winstanley C., Langille M. G. I., Fothergill J. L., Kukavica-Ibrulj I., Paradis-Bleau C., Sanschagrin F., Thomson N. R., Winsor G. L., Quail M. A. other authors 2009; Newly introducedgenomic prophage islands are critical determinants of in vivo competitivenessin the Liverpool epidemic strain of Pseudomonas aeruginosa . Genome Res 19:12–23
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.015875-0
Loading
/content/journal/jmm/10.1099/jmm.0.015875-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error