1887

Abstract

We studied the expression of DnaK and GroEL in cells (strains ATCC 19606 and RS4) under stress caused by heat shock or antibiotics. A Western blot assay showed that DnaK and GroEL levels increased transiently more than 2-fold after exposure of bacterial cells to heat shock for 20 min at 50 °C. Heat induction of DnaK and GroEL was blocked completely when an inhibitor of transcription, rifampicin, was added 1 min before a temperature upshift to 50 °C, suggesting that the induction of these chaperones depends on transcription. cells pretreated at 45 °C for 30 min were better able to survive at 50 °C for 60 min than cells pretreated at 37 °C, indicating that is able to acquire thermotolerance. DnaK and GroEL were successfully induced in cells pre-incubated with a subinhibitory concentration of streptomycin. Moreover, bacterial cells pretreated for 30 min at 45 °C were better able to survive streptomycin exposure than cells pretreated at physiological temperatures. DnaK expression was upregulated in a multidrug-resistant strain of (RS4) in the presence of different antimicrobials (ampicillin+sulbactam, cefepime, meropenem and sulphamethoxazole+trimethoprim). This study is to the best of our knowledge the first to show that DnaK and GroEL could play an important role in the stress response induced by antibiotics.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.020339-0
2010-09-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/9/1061.html?itemId=/content/journal/jmm/10.1099/jmm.0.020339-0&mimeType=html&fmt=ahah

References

  1. Avedissian M., Gomes S. L. 1996; Expression of the groESL operon is cell cycle controlled in Caulobacter crescentus . Mol Microbiol 19:79–89 [CrossRef]
    [Google Scholar]
  2. Benndorf D., Loffhagen N., Babel W. 1999; Induction of heat shock proteins in response to primary alcohols in Acinetobacter calcoaceticus . Electrophoresis 20:781–789 [CrossRef]
    [Google Scholar]
  3. Benndorf D., Loffhagen N., Babel W. 2001; Protein synthesis patterns in Acinetobacter calcoaceticus induced by phenol and catechol show specificities of responses to chemostress. FEMS Microbiol Lett 200:247–252 [CrossRef]
    [Google Scholar]
  4. Bergogne-Bérézin E., Towner K. J. 1996; Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 9:148–165
    [Google Scholar]
  5. Blaszczak A., Zylicz M., Georgopoulos C., Liberek K. 1995; Both ambient temperature and the DnaK chaperone machine modulate the heat shock response in Escherichia coli by regulating the switch between σ 70 and σ 32 factors assembled with RNA polymerase. EMBO J 14:5085–5093
    [Google Scholar]
  6. Bouvet P. J. M., Grimont P. A. D. 1986; Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp.nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii . Int J Syst Bacteriol 36:228–240 [CrossRef]
    [Google Scholar]
  7. Bouvet P. J., Grimont P. A. 1987; Identification and biotyping of clinical isolates of Acinetobacter . Ann Inst Pasteur Microbiol 138:569–578 [CrossRef]
    [Google Scholar]
  8. Chen T. L., Siu L. K., Wu R. C., Shaio M. F., Huang L. Y., Fung C. P., Lee C. M., Cho W. L. 2007; Comparison of one-tube multiplex PCR, automated ribotyping and intergenic spacer (ITS) sequencing for rapid identification of Acinetobacter baumannii . Clin Microbiol Infect 13:801–806 [CrossRef]
    [Google Scholar]
  9. Choi J. Y., Park Y. S., Cho C. H., Park Y. S., Shin S. Y., Song Y. G., Yong D., Lee K., Kim J. M. 2004; Synergic in vitro-activity of imipenem and sulbactam against Acinetobacter baumannii . Clin Microbiol Infect 10:1098–1101 [CrossRef]
    [Google Scholar]
  10. Cudic M., Condie B. A., Weiner D. J., Lysenko E. S., Xiang Z. Q., Insug O., Bulet P., Otvos L. Jr 2002; Development of novel antibacterial peptides that kill resistant isolates. Peptides 23:2071–2083 [CrossRef]
    [Google Scholar]
  11. da Silva A. C. A., Simão R. C. G., Susin M. F., Baldini R. L., Avedissian M., Gomes S. L. 2003; Downregulation of the heat shock response is independent of DnaK and σ 32 levels in Caulobacter crescentus . Mol Microbiol 49:541–553 [CrossRef]
    [Google Scholar]
  12. Falagas M. E., Koletsi P. K., Bliziotis I. A. 2006; The diversity of definitions of multidrug-resistant (MDR) and pandrug-resistant (PDR) Acinetobacter baumannii and Pseudomonas aeruginosa . J Med Microbiol 55:1619–1629 [CrossRef]
    [Google Scholar]
  13. Fournier P.-E., Vallenet D., Barbe V., Audic S., Ogata H., Poirel L., Richet H., Robert C., Mangenot S. other authors 2006; Comparative genomics of multidrug resistance in Acinetobacter baumannii . PLoS Genet 2:e7 [CrossRef]
    [Google Scholar]
  14. Fu W., Demei Z., Shi W., Fupin H., Yingyuan Z. 2003; The susceptibility of non-fermentative Gram negative bacilli to cefoperazone and sulbactam compared with other antibacterial agents. Int J Antimicrob Agents 22:444–448 [CrossRef]
    [Google Scholar]
  15. Gomes S. L., Simão R. C. G. 2009; Stress response: heat. In Encyclopedia of Microbiology pp 464–474 Edited by Schaechter M. Oxford: Elsevier Academic Press;
    [Google Scholar]
  16. Gophna U., Ron E. Z. 2003; Virulence and heat shock response. Int J Med Microbiol 292:453–461 [CrossRef]
    [Google Scholar]
  17. Herendeen S. L., VanBogelen R. A., Neidhardt F. C. 1979; Levels of major proteins of Escherichia coli during growth at different temperatures. J Bacteriol 139:185–194
    [Google Scholar]
  18. Hottes A. K., Meewan M., Yang D., Arana N., Romero P., McAdams H. H., Stephens C. 2004; Transcriptional profiling of Caulobacter crescentus during growth on complex and minimal media. J Bacteriol 186:1448–1461 [CrossRef]
    [Google Scholar]
  19. Kragol G., Lovas S., Varadi G., Condie B. A., Hoffmann R., Otvos L. Jr 2001; The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40:3016–3026 [CrossRef]
    [Google Scholar]
  20. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  21. Laport M. S., dos Santos L. L., Lemos J. A. C., Bastos M. C. F., Burne R. A., Giambiagi-deMarval M. 2006; Organization of heat shock dnaK and groE operons of the nosocomial pathogen Enterococcus faecium . Res Microbiol 157:162–168 [CrossRef]
    [Google Scholar]
  22. Lathigra R. B., Butcher P. D., Garbe T. R., Young D. B. 1991; Heat shock proteins as virulence factors of pathogens. Curr Top Microbiol Immunol 167:125–143
    [Google Scholar]
  23. Marr A. K., Overhage J., Bains M., Hancock R. E. W. 2007; The Lon protease of Pseudomonas aeruginosa is induced by aminoglycosides and is involved in biofilm formation and motility. Microbiology 153:474–482 [CrossRef]
    [Google Scholar]
  24. Misra N., Habib S., Ranjan A., Hasnain S. E., Nath I. 1996; Expression and functional characterization of the clpC gene of Mycobacterium leprae : ClpC protein elicits human antibody response. Gene 172:99–104 [CrossRef]
    [Google Scholar]
  25. Morrison R. P., Belland R. J., Lyng K., Caldwell H. D. 1989; Chlamydial disease pathogenesis: the 57-kD chlamydial hypersensitivity antigen is a stress response protein. J Exp Med 170:1271–1283 [CrossRef]
    [Google Scholar]
  26. Mosier D., Iandolo J., Rogers D., Uhlich G., Crupper S. 1998; Characterization of a 54-kDa heat-shock-inducible protein of Pasteurella haemolytica . Vet Microbiol 60:67–73 [CrossRef]
    [Google Scholar]
  27. Neidhardt F. C., VanBogelen R. A. 1987; Heat shock response. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology . pp 1334–1345 Edited by Neidhardt F. C., Ingraham J. L., Low K. B., Magasanik B., Schaechter M., Umbarger H. E. Washington, DC: American Society for Microbiology;
  28. Peleg A. Y., Seifert H., Paterson D. L. 2008; Acinetobacter baumannii : emergence of a successful pathogen. Clin Microbiol Rev 21:538–582 [CrossRef]
    [Google Scholar]
  29. Poole K. 2002; Mechanisms of bacterial biocide and antibiotic resistance. J Appl Microbiol 92:55S–64S [CrossRef]
    [Google Scholar]
  30. Simão R. C. G., Susin M. F., Martinez C. E. A., Gomes S. L. 2005; Cells lacking ClpB display a prolonged shutoff phase of the heat shock response in Caulobacter crescentus . Mol Microbiol 57:592–603 [CrossRef]
    [Google Scholar]
  31. Singh V. K., Jayaswal R. K., Wilkinson B. J. 2001; Cell wall-active antibiotic induced proteins of Staphylococcus aureus identified using a proteomic approach. FEMS Microbiol Lett 199:79–84
    [Google Scholar]
  32. Singh V. K., Utaida S., Jackson L. S., Jayaswal R. K., Wilkinson B. J., Neal R. 2007; Role for dnaK locus in tolerance of multiple stresses in Staphylococcus aureus . Microbiology 153:3162–3173 [CrossRef]
    [Google Scholar]
  33. Smith M. G., Gianoulis T. A., Pukatzki S., Mekalanos J. J., Ornston L. N., Gerstein M., Snyder M. 2007; New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev 21:601–614 [CrossRef]
    [Google Scholar]
  34. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354 [CrossRef]
    [Google Scholar]
  35. Utaida S., Dunman P. M., Macapagal D., Murphy E., Projan S. J., Singh V. K., Jayaswal R. K., Wilkinson B. J. 2003; Genome-wide transcriptional profiling of the response of Staphylococcus aureus to cell-wall-active antibiotics reveals a cell-wall-stress stimulon. Microbiology 149:2719–2732 [CrossRef]
    [Google Scholar]
  36. Van Looveren M., Goossens H. the ARPAC Steering Group 2004; Antimicrobial resistance of Acinetobacter spp. in Europe. Clin Microbiol Infect 10:684–704 [CrossRef]
    [Google Scholar]
  37. Waxman D. J., Strominger J. L. 1983; Penicillin-binding proteins and the mechanism of action of beta-lactam antibiotics. Annu Rev Biochem 52:825–869 [CrossRef]
    [Google Scholar]
  38. Yamaguchi Y., Tomoyasu T., Takaya A., Morioka M., Yamamoto T. 2003; Effects of disruption of heat shock genes on susceptibility of Escherichia coli to fluoroquinolones. BMC Microbiol 3:16–23 [CrossRef]
    [Google Scholar]
  39. Yura T., Kanemori M., Morita M. T. 2000; Heat shock response: regulation and function. In Bacterial Stress Response pp 3–18 Edited by Storz G., Hengge-Aronis R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.020339-0
Loading
/content/journal/jmm/10.1099/jmm.0.020339-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error