1887

Abstract

Dysbiosis of the gut mucosa-associated microbiota (MAM) plays a pivotal role in the pathogenesis of chronic inflammatory bowel diseases (IBD). To date, dysbiosis only describes the altered composition of the different bacterial populations, but little is known about transcriptional activity, metabolism and the ‘live’ status of the MAM. In this study we investigated the transcriptional activity of the dominant intestinal bacterial populations in patients with IBD. Colonic mucosal biopsies from patients with active Crohn's disease (CD; =10), active ulcerative colitis (UC; =10) and healthy individuals (HI; =10) were compared by 16S rRNA gene and rRNA profiles using clone libraries with more than 1700 sequenced clones. Bacterial richness was significantly lower in clone libraries based on rRNA compared to those based on the rRNA genes in the CD group (3.01 vs 3.91) and the UC group (3.61 vs 4.15), but showed no difference in HI (3.81 vs 3.85). The qualitative composition of rRNA and rRNA gene clone libraries was significantly different, with the phylum being the most active (<0.01) compared to other populations in all clinical groups. In contrast, and were inactive in the CD group, while sp. were both abundant and active in the CD and UC groups. Most of the phylotypes showing the highest activity index ratios represented less than 1 % of the microbiota. Our findings indicate that specific bacterial populations are activated in IBD patients, while other groups are in an inactive or ‘dormant’ state. The transcriptional activity points to a more functional role of the intestinal mucosal microbiota and may lead to the identification of therapeutic targets in the active modulation of microbial factors.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.021170-0
2010-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jmm/59/9/1114.html?itemId=/content/journal/jmm/10.1099/jmm.0.021170-0&mimeType=html&fmt=ahah

References

  1. Chao A. 1984; Nonparametric estimation of the number of classes in a population. Scand J Statist 11:265–270
    [Google Scholar]
  2. Chao A., Lee S.-M. 1992; Estimating the number of classes via sample coverage. J Am Stat Assoc 87:210–217 [CrossRef]
    [Google Scholar]
  3. Cole J. R., Chai B., Marsh T. L., Farris R. J., Wang Q., Kulam S. A., Chandra S., McGarrell D. M., Schmidt T. M. other authors 2003; The ribosomal database project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443 [CrossRef]
    [Google Scholar]
  4. Cole J. R., Chai B., Farris R. J., Wang Q., Kulam-Syed-Mohideen A. S., McGarrell D. M., Bandela A. M., Cardenas E., Garrity G. M., Tiedje J. M. 2007; The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35:D169–D172 [CrossRef]
    [Google Scholar]
  5. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T. other authors 2009; The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145 [CrossRef]
    [Google Scholar]
  6. Darfeuille-Michaud A., Neut C., Barnich N., Lederman E., Di Martino P., Desreumaux P., Gambiez L., Joly B., Cortot A., Colombel J. F. 1998; Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn's disease. Gastroenterology 115:1405–1413 [CrossRef]
    [Google Scholar]
  7. Devillard E., McIntosh F. M., Duncan S. H., Wallace R. J. 2007; Metabolism of linoleic acid by human gut bacteria: different routes for biosynthesis of conjugated linoleic acid. J Bacteriol 189:2566–2570 [CrossRef]
    [Google Scholar]
  8. Dunny G. M., Brickman T. J., Dworkin M. 2008; Multicellular behavior in bacteria: communication, cooperation, competition and cheating. Bioessays 30:296–298 [CrossRef]
    [Google Scholar]
  9. Eckburg P. B., Bik E. M., Bernstein C. N., Purdom E., Dethlefsen L., Sargent M., Gill S. R., Nelson K. E., Relman D. A. 2005; Diversity of the human intestinal microbial flora. Science 308:1635–1638 [CrossRef]
    [Google Scholar]
  10. Erridge C., Pridmore A., Eley A., Stewart J., Poxton I. R. 2004; Lipopolysaccharides of Bacteroides fragilis , Chlamydia trachomatis and Pseudomonas aeruginosa signal via Toll-like receptor 2. J Med Microbiol 53:735–740 [CrossRef]
    [Google Scholar]
  11. Frank D. N., St Amand A. L., Feldman R. A., Boedeker E. C., Harpaz N., Pace N. R. 2007; Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A 104:13780–13785 [CrossRef]
    [Google Scholar]
  12. Frias-Lopez J., Shi Y., Tyson G. W., Coleman M. L., Schuster S. C., Chisholm S. W., Delong E. F. 2008; Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci U S A 105:3805–3810 [CrossRef]
    [Google Scholar]
  13. Geboes K., Dalle I. 2002; Influence of treatment on morphological features of mucosal inflammation. Gut 50:iii37–iii42
    [Google Scholar]
  14. Geboes K., Riddell R., Ost A., Jensfelt B., Persson T., Löfberg R. 2000; A reproducible grading scale for histological assessment of inflammation in ulcerative colitis. Gut 47:404–409 [CrossRef]
    [Google Scholar]
  15. Giaffer M. H., Holdsworth C. D., Duerden B. I. 1992; Virulence properties of E. coli strains isolated from patients with inflammatory bowel disease. Gut 33:646–650 [CrossRef]
    [Google Scholar]
  16. Gophna U., Sommerfeld K., Gophna S., Doolittle W. F., Veldhuyzen van Zanten S. J. 2006; Differences between tissue-associated intestinal microfloras of patients with Crohn's disease and ulcerative colitis. J Clin Microbiol 44:4136–4141 [CrossRef]
    [Google Scholar]
  17. Hartley M. G., Hudson M. J., Swarbrick E. T., Hill M. J., Gent A. E., Hellier M. D., Grace R. H. 1992; The rectal mucosa-associated microflora in patients with ulcerative colitis. J Med Microbiol 36:96–103 [CrossRef]
    [Google Scholar]
  18. Hugenholtz P., Goebel B. M., Pace N. R. 1998; Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774
    [Google Scholar]
  19. Josephson K. L., Gerba C. P., Pepper T. L. 1993; Polymerase chain reaction of nonviable bacterial pathogens. Appl Environ Microbiol 59:3513–3515
    [Google Scholar]
  20. Langendijk P. S., Schut F., Jansen G. J., Raangs G. C., Kamphuis G. R., Wilkinson M. H., Welling G. W. 1995; Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and application in fecal samples. Appl Environ Microbiol 61:3069–3075
    [Google Scholar]
  21. Lepage P., Seksik P., Sutren M., de la Cochetière M. F., Jian R., Marteau P., Doré J. 2005; Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD. Inflamm Bowel Dis 11:473–480 [CrossRef]
    [Google Scholar]
  22. Lorenz M. G., Wackernagel W. 1987; Adsorption of DNA to sand and variable degradation rates of adsorbed DNA. Appl Environ Microbiol 53:2948–2952
    [Google Scholar]
  23. Lucke K., Miehlke S., Jacobs E., Schuppler M. 2006; Prevalence of Bacteroides and Prevotella spp. in ulcerative colitis. J Med Microbiol 55:617–624 [CrossRef]
    [Google Scholar]
  24. Manichanh C., Rigottier-Gois L., Bonnaud E., Gloux K., Pelletier E., Frangeul L., Nalin R., Jarrin C., Chardon P. other authors 2006; Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 55:205–211 [CrossRef]
    [Google Scholar]
  25. Mazmanian S. K., Liu C. H., Tzianabos A. O., Kasper D. L. 2005; An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118 [CrossRef]
    [Google Scholar]
  26. Mazmanian S. K., Round J. L., Kasper D. L. 2008; A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453:620–625 [CrossRef]
    [Google Scholar]
  27. McFarlene G., Gibson G. 1994; Metabolic activities of the normal colonic microflora. In Human Health: Contribution of Microorganisms pp 17–38 Edited by Gibson S. Frankfurt: Springer;
    [Google Scholar]
  28. Netea M. G., Kullberg B. J., de Jong D. J., Franke B., Sprong T., Naber T. H., Drenth J. P., Van der Meer J. W. 2004; NOD2 mediates anti-inflammatory signals induced by TLR2 ligands: implications for Crohn's disease. Eur J Immunol 34:2052–2059 [CrossRef]
    [Google Scholar]
  29. Ott S. J., Musfeldt M., Wenderoth D. F., Hampe J., Brant O., Fölsch U. R., Timmis K. N., Schreiber S. 2004; Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease. Gut 53:685–693 [CrossRef]
    [Google Scholar]
  30. Ott S. J., Kühbacher T., Musfeldt M., Rosenstiel P., Hellmig S., Rehman A., Drews O., Weichert W., Timmis K. N., Schreiber S. 2008a; Fungi and inflammatory bowel diseases: alterations of composition and diversity. Scand J Gastroenterol 43:831–841 [CrossRef]
    [Google Scholar]
  31. Ott S. J., Plamondon S., Hart A., Begun A., Rehman A., Kamm M. A., Schreiber S. 2008b; Dynamics of the mucosa-associated flora in ulcerative colitis during remission and clinical relapse. J Clin Microbiol 46:3510–3513 [CrossRef]
    [Google Scholar]
  32. Poxton I. R., Brown R., Sawyerr A., Ferguson A. 1997; Mucosa-associated bacterial flora of the human colon. J Med Microbiol 46:85–91 [CrossRef]
    [Google Scholar]
  33. Rigottier-Gois L., Bourhis A. G., Gramet G., Rochet V., Doré J. 2003; Fluorescent hybridisation combined with flow cytometry and hybridisation of total RNA to analyse the composition of microbial communities in human faeces using 16S rRNA probes. FEMS Microbiol Ecol 43:237–245 [CrossRef]
    [Google Scholar]
  34. Schloss P. D., Handelsman J. 2004; Status of the microbial census. Microbiol Mol Biol Rev 68:686–691 [CrossRef]
    [Google Scholar]
  35. Schloss P. D., Handelsman J. 2005; Introducing dotur, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506 [CrossRef]
    [Google Scholar]
  36. Schreiber S., Rosenstiel P., Albrecht M., Hampe J., Krawczak M. 2005; Genetics of Crohn disease, an archetypal inflammatory barrier disease. Nat Rev Genet 6:376–388
    [Google Scholar]
  37. Seksik P., Lepage P., de la Cochetière M. F., Bourreille A., Sutren M., Galmiche J. P., Doré J., Marteau P. 2005; Search for localized dysbiosis in Crohn's disease ulcerations by temporal temperature gradient gel electrophoresis of 16S rRNA. J Clin Microbiol 43:4654–4658 [CrossRef]
    [Google Scholar]
  38. Sokol H., Lepage P., Seksik P., Doré J., Marteau P. 2006; Temperature gradient gel electrophoresis of faecal 16S rRNA reveals active Escherichia coli in the microbiota of patients with ulcerative colitis. J Clin Microbiol 44:3172–3177 [CrossRef]
    [Google Scholar]
  39. Suau A., Bonnet R., Sutren M., Godon J. J., Gibson G. R., Collins M. D., Doré J. 1999; Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807
    [Google Scholar]
  40. Swidsinski A., Ladhoff A., Pernthaler A., Swidsinski S., Loening-Baucke V., Ortner M., Weber J., Hoffmann U., Schreiber S. other authors 2002; Mucosal flora in inflammatory bowel disease. Gastroenterology 122:44–54 [CrossRef]
    [Google Scholar]
  41. Swidsinski A., Weber J., Loening-Baucke V., Hale L. P., Lochs H. 2005; Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol 43:3380–3389 [CrossRef]
    [Google Scholar]
  42. Tamboli C. P., Neut C., Desreumaux P., Colombel J. F. 2004; Dysbiosis in inflammatory bowel disease. Gut 53:1–4 [CrossRef]
    [Google Scholar]
  43. Tannock G. W. 2001; Molecular assessment of intestinal microflora. Am J Clin Nutr 73:410S–414S
    [Google Scholar]
  44. Tannock G. W. 2002; Molecular methods for exploring the intestinal ecosystem. Br J Nutr 87:S199–S201 [CrossRef]
    [Google Scholar]
  45. Vasquez N., Mangin I., Lepage P., Seksik P., Duong J. P., Blum S., Schiffrin E., Suau A., Allez M. other authors 2007; Patchy distribution of mucosal lesions in ileal Crohn's disease is not linked to differences in the dominant mucosa-associated bacteria: a study using fluorescence in situ hybridization and temporal temperature gradient gel electrophoresis. Inflamm Bowel Dis 13:684–692 [CrossRef]
    [Google Scholar]
  46. Wagner R. 1994; The regulation of ribosomal RNA synthesis and bacterial cell growth. Arch Microbiol 161:100–106 [CrossRef]
    [Google Scholar]
  47. Wilson K. H., Blitchington R. B. 1996; Human colonic biota studied by ribosomal DNA sequence analysis. Appl Environ Microbiol 62:2273–2278
    [Google Scholar]
  48. Zoetendal E. G., Akkermans A. D., de Vos W. M. 1998; Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64:3854–3859
    [Google Scholar]
  49. Zoetendal E. G., von Wright A., Vilpponen-Salmela T., Ben-Amor K., Akkermans A. D., de Vos W. M. 2002; Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl Environ Microbiol 68:3401–3407 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.021170-0
Loading
/content/journal/jmm/10.1099/jmm.0.021170-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error