1887

Abstract

As the causative agent of cholera, the bacterium represents an enormous public health burden, especially in developing countries around the world. Cholera is a self-limiting illness; however, antibiotics are commonly administered as part of the treatment regimen. Here we review the initial identification and subsequent evolution of antibiotic-resistant strains of . Antibiotic resistance mechanisms, including efflux pumps, spontaneous chromosomal mutation, conjugative plasmids, SXT elements and integrons, are also discussed. Numerous multidrug-resistant strains of have been isolated from both clinical and environmental settings, indicating that antibiotic use has to be restricted and alternative methods for treating cholera have to be implemented.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.023051-0
2011-04-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/4/397.html?itemId=/content/journal/jmm/10.1099/jmm.0.023051-0&mimeType=html&fmt=ahah

References

  1. Abera B., Bezabih B., Dessie A. 2010; Antimicrobial susceptibility of V. cholerae in north west, Ethiopia. Ethiop Med J 48:23–28
    [Google Scholar]
  2. Adabi M., Bakhshi B., Goudarzi H., Zahraei S. M., Pourshafie M. R. 2009; Distribution of class I integron and sulfamethoxazole trimethoprim constin in Vibrio cholerae isolated from patients in Iran. Microb Drug Resist 15:179–184 [CrossRef]
    [Google Scholar]
  3. Allen J. G., Atherton F. R., Hall M. J., Hassall C. H., Holmes S. W., Lambert R. W., Nisbet L. J., Ringrose P. S. 1979; Phosphonopeptides as antibacterial agents: alaphosphin and related phosphonopeptides. Antimicrob Agents Chemother 15:684–695 [CrossRef]
    [Google Scholar]
  4. Atherton F. R., Hall M. J., Hassall C. H., Lambert R. W., Lloyd W. J., Ringrose P. S. 1979; Phosphonopeptides as antibacterial agents: mechanism of action of alaphosphin. Antimicrob Agents Chemother 15:696–705 [CrossRef]
    [Google Scholar]
  5. Bani S., Mastromarino P. N., Ceccarelli D., Le Van A., Salvia A. M., Ngo Viet Q. T., Hai D. H., Bacciu D., Cappuccinelli P., Colombo M. M. 2007; Molecular characterization of ICEVchVie0 and its disappearance in Vibrio cholerae O1 strains isolated in 2003 in Vietnam. FEMS Microbiol Lett 266:42–48 [CrossRef]
    [Google Scholar]
  6. Baranwal S., Dey K., Ramamurthy T., Nair G. B., Kundu M. 2002; Role of active efflux in association with target gene mutations in fluoroquinolone resistance in clinical isolates of Vibrio cholerae . Antimicrob Agents Chemother 46:2676–2678 [CrossRef]
    [Google Scholar]
  7. Beaber J. W., Hochhut B., Waldor M. K. 2004; SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427:72–74 [CrossRef]
    [Google Scholar]
  8. Begum A., Rahman M. M., Ogawa W., Mizushima T., Kuroda T., Tsuchiya T. 2005; Gene cloning and characterization of four MATE family multidrug efflux pumps from Vibrio cholerae non-O1. Microbiol Immunol 49:949–957 [CrossRef]
    [Google Scholar]
  9. Bina J. E., Provenzano D., Wang C., Bina X. R., Mekalanos J. J. 2006; Characterization of the Vibrio cholerae vexAB and vexCD efflux systems. Arch Microbiol 186:171–181 [CrossRef]
    [Google Scholar]
  10. Bina X. R., Provenzano D., Nguyen N., Bina J. E. 2008; Vibrio cholerae RND family efflux systems are required for antimicrobial resistance, optimal virulence factor production, and colonization of the infant mouse small intestine. Infect Immun 76:3595–3605 [CrossRef]
    [Google Scholar]
  11. Binsztein N., Costagliola M. C., Pichel M., Jurquiza V., Ramírez F. C., Akselman R., Vacchino M., Huq A., Colwell R. 2004; Viable but nonculturable Vibrio cholerae O1 in the aquatic environment of Argentina. Appl Environ Microbiol 70:7481–7486 [CrossRef]
    [Google Scholar]
  12. Burrus V., Waldor M. K. 2003; Control of SXT integration and excision. J Bacteriol 185:5045–5054 [CrossRef]
    [Google Scholar]
  13. Burrus V., Marrero J., Waldor M. K. 2006; The current ICE age: biology and evolution of SXT-related integrating conjugative elements. Plasmid 55:173–183 [CrossRef]
    [Google Scholar]
  14. Cash R. A., Music S. I., Libonati J. P., Snyder M. J., Wenzel R. P., Hornick R. B. 1974; Response of man to infection with Vibrio cholerae . I. Clinical, serologic, and bacteriologic responses to a known inoculum. J Infect Dis 129:45–52 [CrossRef]
    [Google Scholar]
  15. Chander J., Kaistha N., Gupta V., Mehta M., Singla N., Deep A., Sarkar B. L. 2009; Epidemiology & antibiograms of Vibrio cholerae isolates from a tertiary care hospital in Chandigarh, north India. Indian J Med Res 129:613–617
    [Google Scholar]
  16. Chandrasekhar M. R., Krishna B. V., Patil A. B. 2008; Changing characteristics of Vibrio cholerae : emergence of multidrug resistance and non-O1, non-O139 serogroups. Southeast Asian J Trop Med Public Health 39:1092–1097
    [Google Scholar]
  17. Clatworthy A. E., Pierson E., Hung D. T. 2007; Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 3:541–548 [CrossRef]
    [Google Scholar]
  18. Colmer J. A., Fralick J. A., Hamood A. N. 1998; Isolation and characterization of a putative multidrug resistance pump from Vibrio cholerae . Mol Microbiol 27:63–72 [CrossRef]
    [Google Scholar]
  19. Colwell R. R. 1996; Global climate and infectious disease: the cholera paradigm. Science 274:2025–2031 [CrossRef]
    [Google Scholar]
  20. Daccord A., Ceccarelli D., Burrus V. 2010; Integrating conjugative elements of the SXT/R391 family trigger the excision and drive the mobilization of a new class of Vibrio genomic islands. Mol Microbiol 78:576–588 [CrossRef]
    [Google Scholar]
  21. Dalsgaard A., Forslund A., Tam N. V., Vinh D. X., Cam P. D. 1999; Cholera in Vietnam: changes in genotypes and emergence of class I integrons containing aminoglycoside resistance gene cassettes in Vibrio cholerae O1 strains isolated from 1979 to 1996. J Clin Microbiol 37:734–741
    [Google Scholar]
  22. Das S., Saha R., Kaur I. R. 2008; Trend of antibiotic resistance of Vibrio cholerae strains from East Delhi. Indian J Med Res 127:478–482
    [Google Scholar]
  23. Dizon J. J., Fukumi H., Barua D., Valera J., Jayme F., Gomez F., Yamamoto S. I., Wake A., Gomez C. Z. other authors 1967; Studies on cholera carriers. Bull World Health Organ 37:737–743
    [Google Scholar]
  24. Ehara M., Nguyen B. M., Nguyen D. T., Toma C., Higa N., Iwanaga M. 2004; Drug susceptibility and its genetic basis in epidemic Vibrio cholerae O1 in Vietnam. Epidemiol Infect 132:595–600 [CrossRef]
    [Google Scholar]
  25. Ewald P. W. 1994 Evolution of Infectious Disease Oxford: Oxford University Press;
    [Google Scholar]
  26. Faruque S. M., Albert M. J., Mekalanos J. J. 1998; Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae . Microbiol Mol Biol Rev 62:1301–1314
    [Google Scholar]
  27. Faruque S. M., Islam M. J., Ahmad Q. S., Faruque A. S., Sack D. A., Nair G. B., Mekalanos J. J. 2005; Self-limiting nature of seasonal cholera epidemics: role of host-mediated amplification of phage. Proc Natl Acad Sci U S A 102:6119–6124 [CrossRef]
    [Google Scholar]
  28. Faruque S. M., Islam M. J., Ahmad Q. S., Biswas K., Faruque A. S., Nair G. B., Sack R. B., Sack D. A., Mekalanos J. J. 2006; An improved technique for isolation of environmental Vibrio cholerae with epidemic potential: monitoring the emergence of a multiple-antibiotic-resistant epidemic strain in Bangladesh. J Infect Dis 193:1029–1036 [CrossRef]
    [Google Scholar]
  29. Faruque A. S., Alam K., Malek M. A., Khan M. G., Ahmed S., Saha D., Khan W. A., Nair G. B., Salam M. A. other authors 2007; Emergence of multidrug-resistant strain of Vibrio cholerae O1 in Bangladesh and reversal of their susceptibility to tetracycline after two years. J Health Popul Nutr 25:241–243
    [Google Scholar]
  30. Garg P., Sinha S., Chakraborty R., Bhattacharya S. K., Nair G. B., Ramamurthy T., Takeda Y. 2001; Emergence of fluoroquinolone-resistant strains of Vibrio cholerae O1 biotype El Tor among hospitalized patients with cholera in Calcutta, India. Antimicrob Agents Chemother 45:1605–1606 [CrossRef]
    [Google Scholar]
  31. Gellert M., Mizuuchi K., O'Dea M. H., Itoh T., Tomizawa J. I. 1977; Nalidixic acid resistance: a second genetic character involved in DNA gyrase activity. Proc Natl Acad Sci U S A 74:4772–4776 [CrossRef]
    [Google Scholar]
  32. Glass R. I., Huq I., Alim A. R., Yunus M. 1980; Emergence of multiply antibiotic-resistant Vibrio cholerae in Bangladesh. J Infect Dis 142:939–942 [CrossRef]
    [Google Scholar]
  33. Glass R. I., Huq M. I., Lee J. V., Threlfall E. J., Khan M. R., Alim A. R., Rowe B., Gross R. J. 1983; Plasmid-borne multiple drug resistance in Vibrio cholerae serogroup O1, biotype El Tor: evidence for a point-source outbreak in Bangladesh. J Infect Dis 147:204–209 [CrossRef]
    [Google Scholar]
  34. Goel A. K., Jain M., Kumar P., Jiang S. C. 2010; Molecular characterization of Vibrio cholerae outbreak strains with altered El Tor biotype from southern India. World J Microbiol Biotechnol 26:281–287 [CrossRef]
    [Google Scholar]
  35. Goss W. A., Deitz W. H., Cook T. M. 1965; Mechanism of action of nalidixic acid on Escherichia coli . Inhibition of deoxyribonucleic acid synthesis. J Bacteriol 89:1068–1074
    [Google Scholar]
  36. Greenough W. B. III, Gordon R. S. Jr, Rosenberg I. S., Davies B. I., Benenson A. S. 1964; Tetracycline in the treatment of cholera. Lancet 1:355–357
    [Google Scholar]
  37. Guerin E., Cambray G., Sanchez-Alberola N., Campoy S., Erill I., Da Re S., Gonzalez-Zorn B., Barbé J., Ploy M. C., Mazel D. 2009; The SOS response controls integron recombination. Science 324:1034 [CrossRef]
    [Google Scholar]
  38. Hedges R. W., Jacob A. E. 1975; A 98 megadalton R factor of compatibility group C in a Vibrio cholerae El Tor isolate from southern U.S.S.R. J Gen Microbiol 89:383–386 [CrossRef]
    [Google Scholar]
  39. Heidelberg J. F., Eisen J. A., Nelson W. C., Clayton R. A., Gwinn M. L., Dodson R. J., Haft D. H., Hickey E. K., Peterson J. D. other authors 2000; DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae . Nature 406:477–483 [CrossRef]
    [Google Scholar]
  40. Herrington D. A., Hall R. H., Losonsky G., Mekalanos J. J., Taylor R. K., Levine M. M. 1988; Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J Exp Med 168:1487–1492 [CrossRef]
    [Google Scholar]
  41. Hochhut B., Waldor M. K. 1999; Site-specific integration of the conjugal Vibrio cholerae SXT element into prfC . Mol Microbiol 32:99–110 [CrossRef]
    [Google Scholar]
  42. Hochhut B., Marrero J., Waldor M. K. 2000; Mobilization of plasmids and chromosomal DNA mediated by the SXT element, a constin found in Vibrio cholerae O139. J Bacteriol 182:2043–2047 [CrossRef]
    [Google Scholar]
  43. Hochhut B., Lotfi Y., Mazel D., Faruque S. M., Woodgate R., Waldor M. K. 2001; Molecular analysis of antibiotic resistance gene clusters in Vibrio cholerae O139 and O1 SXT constins. Antimicrob Agents Chemother 45:2991–3000 [CrossRef]
    [Google Scholar]
  44. Huda M. N., Chen J., Morita Y., Kuroda T., Mizushima T., Tsuchiya T. 2003; Gene cloning and characterization of VcrM, a Na+-coupled multidrug efflux pump, from Vibrio cholerae non-O1. Microbiol Immunol 47:419–427 [CrossRef]
    [Google Scholar]
  45. Hung D. T., Shakhnovich E. A., Pierson E., Mekalanos J. J. 2005; Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science 310:670–674 [CrossRef]
    [Google Scholar]
  46. Huq A., Small E. B., West P. A., Huq M. I., Rahman R., Colwell R. R. 1983; Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl Environ Microbiol 45:275–283
    [Google Scholar]
  47. Islam A., Bardhan P. K., Islam M. R., Rahman M. 1986; A randomized double blind trial of aspirin versus placebo in cholera and non-cholera diarrhoea. Trop Geogr Med 38:221–225
    [Google Scholar]
  48. Islam M. S., Midzi S. M., Charimari L., Cravioto A., Endtz H. P. 2009; Susceptibility to fluoroquinolones of Vibrio cholerae O1 isolated from diarrheal patients in Zimbabwe. JAMA 302:2321–2322 [CrossRef]
    [Google Scholar]
  49. Iwanaga M., Toma C., Miyazato T., Insisiengmay S., Nakasone N., Ehara M. 2004; Antibiotic resistance conferred by a class I integron and SXT constin in Vibrio cholerae O1 strains isolated in Laos. Antimicrob Agents Chemother 48:2364–2369 [CrossRef]
    [Google Scholar]
  50. Jabeen K., Zafar A., Hasan R. 2008; Increased isolation of Vibrio cholerae O1 serotype Inaba over serotype Ogawa in Pakistan. East Mediterr Health J 14:564–570
    [Google Scholar]
  51. Jain M., Kumar P., Goel A. K., Kamboj D. V., Singh L. 2008; Class 1 integrons and SXT elements conferring multidrug resistance in Vibrio cholerae O1 strains associated with a recent large cholera outbreak in Orissa, Eastern India. Int J Antimicrob Agents 32:459–460 [CrossRef]
    [Google Scholar]
  52. Kaper J., Lockman H., Colwell R. R., Joseph S. W. 1979; Ecology, serology, and enterotoxin production of Vibrio cholerae in Chesapeake Bay. Appl Environ Microbiol 37:91–103
    [Google Scholar]
  53. Karki R., Bhatta D. R., Malla S., Dumre S. P. 2010; Cholera incidence among patients with diarrhea visiting National Public Health Laboratory. Nepal. Jpn J Infect Dis 63:185–187
    [Google Scholar]
  54. Katzung B. G., Masters S. B., Trevor A. J. 2009 Basic & Clinical Pharmacology, 11th edn. New York and London: McGraw-Hill;
    [Google Scholar]
  55. Keramat F., Hashemi S. H., Mamani M., Ranjbar M., Erfan H. 2008; Survey of antibiogram tests in cholera patients in the 2005 epidemic in Hamadan, Islamic Republic of Iran. East Mediterr Health J 14:768–775
    [Google Scholar]
  56. Kim H. B., Wang M., Ahmed S., Park C. H., LaRocque R. C., Faruque A. S., Salam M. A., Khan W. A., Qadri F. other authors 2010; Transferable quinolone resistance in Vibrio cholerae . Antimicrob Agents Chemother 54:799–803 [CrossRef]
    [Google Scholar]
  57. Kirn T. J., Lafferty M. J., Sandoe C. M., Taylor R. K. 2000; Delineation of pilin domains required for bacterial association into microcolonies and intestinal colonization by Vibrio cholerae . Mol Microbiol 35:896–910 [CrossRef]
    [Google Scholar]
  58. Krishna B. V., Patil A. B., Chandrasekhar M. R. 2006; Fluoroquinolone-resistant Vibrio cholerae isolated during a cholera outbreak in India. Trans R Soc Trop Med Hyg 100:224–226 [CrossRef]
    [Google Scholar]
  59. Lindenbaum J., Greenough W. B., Islam M. R. 1967; Antibiotic therapy of cholera. Bull World Health Organ 36:871–883
    [Google Scholar]
  60. MacIntyre D. L., Miyata S. T., Kitaoka M., Pukatzki S. 2010; The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci U S A 107:19520–19524 [CrossRef]
    [Google Scholar]
  61. Maier R. A., Pepper I. L. 2009 Environmental Microbiology, 2nd edn. Amsterdam and London: Elsevier Academic Press;
    [Google Scholar]
  62. Mandomando I., Espasa M., Vallès X., Sacarlal J., Sigaúque B., Ruiz J., Alonso P. 2007; Antimicrobial resistance of Vibrio cholerae O1 serotype Ogawa isolated in Manhiça District Hospital, southern Mozambique. J Antimicrob Chemother 60:662–664 [CrossRef]
    [Google Scholar]
  63. Manga N. M., Ndour C. T., Diop S. A., Dia N. M., Ka-Sall R., Diop B. M., Sow A. I., Sow P. S. 2008; Cholera in Senegal from 2004 to 2006: lessons learned from successive outbreaks. Med Trop (Mars) 68:589–592
    [Google Scholar]
  64. Martínez J. L. 2008; Antibiotics and antibiotic resistance genes in natural environments. Science 321:365–367 [CrossRef]
    [Google Scholar]
  65. Mazel D. 2006; Integrons: agents of bacterial evolution. Nat Rev Microbiol 4:608–620 [CrossRef]
    [Google Scholar]
  66. Mekalanos J. J., Rubin E. J., Waldor M. K. 1997; Cholera: molecular basis for emergence and pathogenesis. FEMS Immunol Med Microbiol 18:241–248 [CrossRef]
    [Google Scholar]
  67. Mhalu F. S., Mmari P. W., Ijumba J. 1979; Rapid emergence of El Tor Vibrio cholerae resistant to antimicrobial agents during first six months of fourth cholera epidemic in Tanzania. Lancet 1:345–347
    [Google Scholar]
  68. Molla A. M., Gyr K., Bardhan P. K., Molla A. 1984; Effect of intravenous somatostatin on stool output in diarrhea due to Vibrio cholerae . Gastroenterology 87:845–847
    [Google Scholar]
  69. Morita Y., Kodama K., Shiota S., Mine T., Kataoka A., Mizushima T., Tsuchiya T. 1998; NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli . Antimicrob Agents Chemother 42:1778–1782
    [Google Scholar]
  70. Ngandjio A., Tejiokem M., Wouafo M., Ndome I., Yonga M., Guenole A., Lemee L., Quilici M. L., Fonkoua M. C. 2009; Antimicrobial resistance and molecular characterization of Vibrio cholerae O1 during the 2004 and 2005 outbreak of cholera in Cameroon. Foodborne Pathog Dis 6:49–56 [CrossRef]
    [Google Scholar]
  71. Opintan J. A., Newman M. J., Nsiah-Poodoh O. A., Okeke I. N. 2008; Vibrio cholerae O1 from Accra, Ghana carrying a class 2 integron and the SXT element. J Antimicrob Chemother 62:929–933 [CrossRef]
    [Google Scholar]
  72. Pan J. C., Ye R., Wang H. Q., Xiang H. Q., Zhang W., Yu X. F., Meng D. M., He Z. S. 2008; Vibrio cholerae O139 multiple-drug resistance mediated by Yersinia pestis pIP1202-like conjugative plasmids. Antimicrob Agents Chemother 52:3829–3836 [CrossRef]
    [Google Scholar]
  73. Paulsen I. T., Brown M. H., Skurray R. A. 1996; Proton-dependent multidrug efflux systems. Microbiol Rev 60:575–608
    [Google Scholar]
  74. Pierce N. F., Banwell J. G., Mitra R. C., Caranasos G. J., Keimowitz R. I., Thomas J., Mondal A. 1968; Controlled comparison of tetracycline and furazolidone in cholera. BMJ 3:277–280 [CrossRef]
    [Google Scholar]
  75. Provenzano D., Kovác P., Wade W. F. 2006; The ABCs (Antibody, B cells, and Carbohydrate epitopes) of cholera immunity: considerations for an improved vaccine. Microbiol Immunol 50:899–927 [CrossRef]
    [Google Scholar]
  76. Putman M., van Veen H. W., Konings W. N. 2000; Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev 64:672–693 [CrossRef]
    [Google Scholar]
  77. Rabbani G. H., Butler T., Bardhan P. K., Islam A. 1983; Reduction of fluid-loss in cholera by nicotinic acid: a randomised controlled trial. Lancet 2:1439–1442
    [Google Scholar]
  78. Rabbani G. H., Butler T., Knight J., Sanyal S. C., Alam K. 1987; Randomized controlled trial of berberine sulfate therapy for diarrhea due to enterotoxigenic Escherichia coli and Vibrio cholerae . J Infect Dis 155:979–984 [CrossRef]
    [Google Scholar]
  79. Rabbani G. H., Butler T., Patte D., Abud R. L. 1989; Clinical trial of clonidine hydrochloride as an antisecretory agent in cholera. Gastroenterology 97:321–325
    [Google Scholar]
  80. Rakoto Alson A. O., Dromigny J. A., Pfister P., Mauclère P. 2001; Vibrio cholerae in Madagascar: study of a multiresistant strain. Arch Inst Pasteur Madagascar 67:6–13
    [Google Scholar]
  81. Ranjbar M., Rahmani E., Nooriamiri A., Gholami H., Golmohamadi A., Barati H., Rajabifar D., Barati S., Sabet M. S. other authors 2010; High prevalence of multidrug-resistant strains of Vibrio cholerae , in a cholera outbreak in Tehran-Iran, during June-September 2008. Trop Doct 40:214–216 [CrossRef]
    [Google Scholar]
  82. Reidl J., Klose K. E. 2002; Vibrio cholerae and cholera: out of the water and into the host. FEMS Microbiol Rev 26:125–139 [CrossRef]
    [Google Scholar]
  83. Roy S. K., Islam A., Ali R., Islam K. E., Khan R. A., Ara S. H., Saifuddin N. M., Fuchs G. J. 1998; A randomized clinical trial to compare the efficacy of erythromycin, ampicillin and tetracycline for the treatment of cholera in children. Trans R Soc Trop Med Hyg 92:460–462 [CrossRef]
    [Google Scholar]
  84. Roychowdhury A., Pan A., Dutta D., Mukhopadhyay A. K., Ramamurthy T., Nandy R. K., Bhattacharya S. K., Bhattacharya M. K. 2008; Emergence of tetracycline-resistant Vibrio cholerae O1 serotype Inaba, in Kolkata, India. Jpn J Infect Dis 61:128–129
    [Google Scholar]
  85. Sack D. A., Lyke C., McLaughlin C., Suwanvanichkij V. 2001; Antimicrobial resistance in shigellosis, cholera and campylobacteriosis. WHO Document WHO/CDS/CSR/DRS/2001.8 Geneva: World Health Organization;
    [Google Scholar]
  86. Sack D. A., Sack R. B., Nair G. B., Siddique A. K. 2004; Cholera. Lancet 363:223–233 [CrossRef]
    [Google Scholar]
  87. Safa A., Nair G. B., Kong R. Y. 2010; Evolution of new variants of Vibrio cholerae O1. Trends Microbiol 18:46–54 [CrossRef]
    [Google Scholar]
  88. Samal B., Ghosh S. K., Mohanty S. K., Patnaik K. 2001; Epidemic of Vibrio cholerae serogroup O139 in Berhampur, Orissa. Indian J Med Res 114:10–11
    [Google Scholar]
  89. Sedas V. T. 2007; Influence of environmental factors on the presence of Vibrio cholerae in the marine environment: a climate link. J Infect Dev Ctries 1:224–241
    [Google Scholar]
  90. Shimada T., Arakawa E., Itoh K., Okitsu T., Matsushima A., Asai Y., Yamai S., Nakazato T., Nair G. B. other authors 1994; Extended serotyping scheme for Vibrio cholerae . Curr Microbiol 28:175–178 [CrossRef]
    [Google Scholar]
  91. Siddique A. K., Akram K., Zaman K., Mutsuddy P., Eusof A., Sack R. B. 1996; Vibrio cholerae O139: how great is the threat of a pandemic?. Trop Med Int Health 1:393–398 [CrossRef]
    [Google Scholar]
  92. Singh A. K., Haldar R., Mandal D., Kundu M. 2006; Analysis of the topology of Vibrio cholerae NorM and identification of amino acid residues involved in norfloxacin resistance. Antimicrob Agents Chemother 50:3717–3723 [CrossRef]
    [Google Scholar]
  93. Smith A. M., Keddy K. H., De Wee L. 2008; Characterization of cholera outbreak isolates from Namibia; December 2006 to February 2007 Epidemiol Infect 136:1207–1209
    [Google Scholar]
  94. Smith K. P., Kumar S., Varela M. F. 2009; Identification, cloning, and functional characterization of EmrD-3, a putative multidrug efflux pump of the major facilitator superfamily from Vibrio cholerae O395. Arch Microbiol 191:903–911 [CrossRef]
    [Google Scholar]
  95. Sonawane N. D., Hu J., Muanprasat C., Verkman A. S. 2006; Luminally active, nonabsorbable CFTR inhibitors as potential therapy to reduce intestinal fluid loss in cholera. FASEB J 20:130–132
    [Google Scholar]
  96. Sugino A., Peebles C. L., Kreuzer K. N., Cozzarelli N. R. 1977; Mechanism of action of nalidixic acid: purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc Natl Acad Sci U S A 74:4767–4771 [CrossRef]
    [Google Scholar]
  97. Summers W. C. 1993; Cholera and plague in India: the bacteriophage inquiry of 1927-1936. J Hist Med Allied Sci 48:275–301 [CrossRef]
    [Google Scholar]
  98. Taylor R. K., Miller V. L., Furlong D. B., Mekalanos J. J. 1987; Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci U S A 84:2833–2837 [CrossRef]
    [Google Scholar]
  99. Threlfall E. J., Rowe B. 1982; Vibrio cholerae El Tor acquires plasmid-encoded resistance to gentamicin. Lancet 1:42
    [Google Scholar]
  100. Tjaniadi P., Lesmana M., Subekti D., Machpud N., Komalarini S., Santoso W., Simanjuntak C. H., Punjabi N., Campbell J. R. other authors 2003; Antimicrobial resistance of bacterial pathogens associated with diarrheal patients in Indonesia. Am J Trop Med Hyg 68:666–670
    [Google Scholar]
  101. Towner K. J., Pearson N. J., Mhalu F. S., O'Grady F. 1980; Resistance to antimicrobial agents of Vibrio cholerae E1 Tor strains isolated during the fourth cholera epidemic in the United Republic of Tanzania. Bull World Health Organ 58:747–751
    [Google Scholar]
  102. Van Bambeke F., Michot J. M., Tulkens P. M. 2003; Antibiotic efflux pumps in eukaryotic cells: occurrence and impact on antibiotic cellular pharmacokinetics, pharmacodynamics and toxicodynamics. J Antimicrob Chemother 51:1067–1077 [CrossRef]
    [Google Scholar]
  103. Van Loon F. P., Rabbani G. H., Bukhave K., Rask-Madsen J. 1992; Indomethacin decreases jejunal fluid secretion in addition to luminal release of prostaglandin E2 in patients with acute cholera. Gut 33:643–645 [CrossRef]
    [Google Scholar]
  104. Waldor M. K., Tschäpe H., Mekalanos J. J. 1996; A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139. J Bacteriol 178:4157–4165
    [Google Scholar]
  105. WHO 1995; Meeting on the Potential Role of New Cholera Vaccines in the Prevention and Control of Cholera outbreaks during Acute Emergencies. Document CDR/GPV/95.1 Geneva: World Health Organization;
  106. WHO 2002; New formula oral rehydration salts. WHO Drug Information 16:121
    [Google Scholar]
  107. WHO 2004; Global Task Force on Cholera Control: first steps for managing an outbreak of acute diarrhoea. Document WHO_CDS_CSR_NCS_2003.7, Rev1. Geneva: World Health Organization;
    [Google Scholar]
  108. WHO 2010; High hopes for oral cholera vaccine. Bull World Health Organ 88:165–166 [CrossRef]
    [Google Scholar]
  109. Woolley R. C., Vediyappan G., Anderson M., Lackey M., Ramasubramanian B., Jiangping B., Borisova T., Colmer J. A., Hamood A. N. other authors 2005; Characterization of the Vibrio cholerae vceCAB multiple-drug resistance efflux operon in Escherichia coli . J Bacteriol 187:5500–5503 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.023051-0
Loading
/content/journal/jmm/10.1099/jmm.0.023051-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error