1887

Abstract

is an unusually virulent coagulase-negative species, which causes serious infection similar to . We evaluated the expression of virulence factors such as synergistic haemolysin (SLUSH), fibrinogen-binding protein (Fbl), biofilm production and biofilm-production-related genes in 23 clinical isolates and one type strain that had been previously characterized for their genotypes. In addition, the biofilm composition and the ability of isolates to adhere to and invade human epithelial lung cells were also investigated. The PCR method used detected the presence of and intercellular adhesin () virulence genes in all isolates. All isolates produced the Fbl protein and, with the exception of the type strain, all isolates produced the SLUSH haemolysin. Fourteen (60.9 %) isolates produced biofilms. The detachment assay, using sodium metaperiodate or proteolytic enzymes to analyse the biofilm composition, showed protein-mediated biofilms in two representative isolates, one for each colony type (rough and smooth). All strongly biofilm-producing isolates, including three with rough colony morphology, had the same prevalent PFGE pattern. However, among the representative strains tested, only the isolate that formed rough colonies was able to adhere to and invade A549 cell monolayers in the same quantities as those observed with isolates ( = 1.000). No significant adhesion or invasion was observed for the other isolates in comparison with the isolate, independent of biofilm production or clonality. Our results could explain the incredible ability of this pathogen to cause infections that are as aggressive as . In addition, the ability of to adhere to and invade eukaryotic cells was also noticed for isolates with rough colony morphology, reinforcing the increased virulence in this species.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.033001-0
2012-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/4/463.html?itemId=/content/journal/jmm/10.1099/jmm.0.033001-0&mimeType=html&fmt=ahah

References

  1. Anguera I., Del Río A., Miró J. M., Matínez-Lacasa X., Marco F., Gumá J. R., Quaglio G., Claramonte X., Moreno A. & other authors ( 2005; Staphylococcus lugdunensis infective endocarditis: description of 10 cases and analysis of native valve, prosthetic valve, and pacemaker lead endocarditis clinical profiles.. Heart 91e10 Available online http://www.heartjnl.com/cgi/content/full/91/2/e10 [CrossRef]
    [Google Scholar]
  2. Amaral M. M., Coelho L. R., Flores R. P., Souza R. R., Silva-Carvalho M. C., Teixeira L. A., Ferreira-Carvalho B. T., Figueiredo A. M. 2005; The predominant variant of the Brazilian epidemic clonal complex of methicillin-resistant Staphylococcus aureus has an enhanced ability to produce biofilm and to adhere to and invade airway epithelial cells. J Infect Dis 192:801–810 [View Article][PubMed]
    [Google Scholar]
  3. Bayles K. W., Wesson C. A., Liou L. E., Fox L. K., Bohach G. A., Trumble W. R. 1998; Intracellular Staphylococcus aureus escapes the endosome and induces apoptosis in epithelial cells. Infect Immun 66:336–342[PubMed]
    [Google Scholar]
  4. Chokr A., Watier D., Eleaume H., Pangon B., Ghnassia J. C., Mack D., Jabbouri S. 2006; Correlation between biofilm formation and production of polysaccharide intercellular adhesin in clinical isolates of coagulase-negative staphylococci. Int J Med Microbiol 296:381–388 [View Article][PubMed]
    [Google Scholar]
  5. Cucarella C., Solano C., Valle J., Amorena B., Lasa I., Penadés J. R. 2001; Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183:2888–2896 [CrossRef]
    [Google Scholar]
  6. Cucarella C., Tormo M. A., Ubeda C., Trotonda M. P., Monzón M., Peris C., Amorena B., Lasa I., Penadés J. R. 2004; Role of biofilm-associated protein Bap in the pathogenesis of bovine Staphylococcus aureus . Infect Immun 72:2177–2185 [View Article][PubMed]
    [Google Scholar]
  7. de Bentzmann S., Tristan A., Etienne J., Brousse N., Vandenesch F., Lina G. 2004; Staphylococcus aureus isolates associated with necrotizing pneumonia bind to basement membrane type I and IV collagens and laminin. J Infect Dis 190:1506–1515 [View Article][PubMed]
    [Google Scholar]
  8. Donvito B., Etienne J., Denoroy L., Greenland T., Benito Y., Vandenesch F. 1997; Synergistic hemolytic activity of Staphylococcus lugdunensis is mediated by three peptides encoded by a non-agr genetic locus. Infect Immun 65:95–100[PubMed]
    [Google Scholar]
  9. Feng Y., Chen C. J., Su L. H., Hu S., Yu J., Chiu C. H. 2008; Evolution and pathogenesis of Staphylococcus aureus: lessons learned from genotyping and comparative genomics. FEMS Microbiol Rev 32:23–37 [View Article][PubMed]
    [Google Scholar]
  10. Frank K. L., Patel R. 2007; Poly-N-acetylglucosamine is not a major component of the extracellular matrix in biofilms formed by icaADBC-positive Staphylococcus lugdunensis isolates. Infect Immun 75:4728–4742 [View Article][PubMed]
    [Google Scholar]
  11. Frank K. L., Del Pozo J. L., Patel R. 2008; From clinical microbiology to infection pathogenesis: how daring to be different works for Staphylococcus lugdunensis . Clin Microbiol Rev 21:111–133 [View Article][PubMed]
    [Google Scholar]
  12. Fujita K., Akino T., Yoshioka H. 1988; Characteristics of heat-stable extracellular hemolysin from Pseudomonas aeruginosa . Infect Immun 56:1385–1387[PubMed]
    [Google Scholar]
  13. Geoghegan J. A., Ganesh V. K., Smeds E., Liang X., Hook M., Foster T. J. 2010; Molecular characterization of the interaction of staphylococcal microbial surface components recognizing adhesive matrix molecules (MSCRAMM) ClfA and Fbl fibrinogen. J Biol Chem 285:6208–6216 [View Article][PubMed]
    [Google Scholar]
  14. Hébert G. A. 1990; Hemolysins and other characteristics that help differentiate and biotype Staphylococcus lugdunensis and Staphylococcus schleiferi . J Clin Microbiol 28:2425–2431[PubMed]
    [Google Scholar]
  15. Karauzum H., Ferry T., de Bentzmann S., Lina G., Bes M., Vandenesch F., Schmaler M., Berger-Bächi B., Etienne J., Landmann R. 2008; Comparison of adhesion and virulence of two predominant hospital-acquired methicillin-resistant Staphylococcus aureus clones and clonal methicillin-susceptible S. aureus isolates. Infect Immun 76:5133–5138 [View Article][PubMed]
    [Google Scholar]
  16. Lambe D. W. Jr, Ferguson K. P., Keplinger J. L., Gemmell C. G., Kalbfleisch J. H. 1990; Pathogenicity of Staphylococcus lugdunensis, Staphylococcus schleiferi, and three other coagulase-negative staphylococci in a mouse model and possible virulence factors. Can J Microbiol 36:455–463 [View Article][PubMed]
    [Google Scholar]
  17. Liu P. Y., Huang Y. F., Tang C. W., Chen Y. Y., Hsieh K. S., Ger L. P., Chen Y. S., Liu Y. C. 2010; Staphylococcus lugdunensis infective endocarditis: a literature review and analysis of risk factors. J Microbiol Immunol Infect 43:478–484 [View Article][PubMed]
    [Google Scholar]
  18. Menzies B. E., Kourteva I. 2000; Staphylococcus aureus α-toxin induces apoptosis in endothelial cells. FEMS Immunol Med Microbiol 29:39–45[PubMed]
    [Google Scholar]
  19. Mitchell J., Tristan A., Foster T. J. 2004; Characterization of the fibrinogen-binding surface protein Fbl of Staphylococcus lugdunensis . Microbiology 150:3831–3841 [View Article][PubMed]
    [Google Scholar]
  20. Nilsson M., Bjerketorp J., Guss B., Frykberg L. 2004; A fibrinogen-binding protein of Staphylococcus lugdunensis . FEMS Microbiol Lett 241:87–93 [View Article][PubMed]
    [Google Scholar]
  21. Otto M. 2008; Staphylococcal biofilms. Curr Top Microbiol Immunol 322:207–228 [View Article][PubMed]
    [Google Scholar]
  22. Pereira E. M., Oliveira F. L., Schuenck R. P., Zoletti G. O., dos Santos K. R. N. 2010; Detection of Staphylococcus lugdunensis by a new species-specific PCR based on the fbl gene. FEMS Immunol Med Microbiol 58:295–298 [View Article][PubMed]
    [Google Scholar]
  23. Potter A., Ceotto H., Giambiagi-deMarval M., dos Santos K. R. N., Nes I. F., Bastos M. C. 2009; The gene bap, involved in biofilm production, is present in Staphylococcus spp. strains from nosocomial infections. J Microbiol 47:319–326 [View Article][PubMed]
    [Google Scholar]
  24. Rautenberg M., Joo H. S., Otto M., Peschel A. 2011; Neutrophil responses to staphylococcal pathogens and commensals via the formyl peptide receptor 2 relates to phenol-soluble modulin release and virulence. FASEB J 25:1254–1263 [View Article][PubMed]
    [Google Scholar]
  25. Sinha B., Francois P., Que Y. A., Hussain M., Heilmann C., Moreillon P., Lew D., Krause K. H., Peters G., Herrmann M. 2000; Heterologously expressed Staphylococcus aureus fibronectin-binding proteins are sufficient for invasion of host cells. Infect Immun 68:6871–6878 [View Article][PubMed]
    [Google Scholar]
  26. Stepanović S., Vuković D., Hola V., Di Bonaventura G., Djukić S., Cirković I., Ruzicka F. 2007; Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 115:891–899 [View Article][PubMed]
    [Google Scholar]
  27. Vivoni A. M., Diep B. A., de Gouveia Magalhães A. C., Santos K. R. N., Riley L. W., Sensabaugh G. F., Moreira B. M. 2006; Clonal composition of Staphylococcus aureus isolates at a Brazilian university hospital: identification of international circulating lineages. J Clin Microbiol 44:1686–1691 [View Article][PubMed]
    [Google Scholar]
  28. You Y. O., Kim K. J., Min B. M., Chung C. P. 1999; Staphylococcus lugdunensis – a potential pathogen in oral infection. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 88:297–302 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.033001-0
Loading
/content/journal/jmm/10.1099/jmm.0.033001-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error