1887

Abstract

Ankle arthritis was induced by a single subcutaneous (s.c.) infection of 1×10 c.f.u. of the subspecies strain RE378, which was isolated from a patient suffering from multiple organ failure due to septicaemia, into both hind footpads of human CD46-expressing transgenic (Tg) mice. In contrast, in non-Tg mice, the incipient foot lesions (swelling and redness) resolved before arthritis developed. The number of viable bacteria in tissue samples and the arthritis frequency on days 3 and 28 after infection were higher in CD46 Tg mice than in non-Tg mice. The histopathological findings in the hind ankle sections of CD46 Tg mice showed the stimulation of osteoclast formation associated with inflammation of the synovial membrane and the development of aggressive granulation tissue (pannus). In addition, increased expression levels of interleukin (IL)-6, receptor activator of NF-κB ligand, IL-1β and tumour necrosis factor alpha were detected in the foot bones of CD46 Tg mice but not in those of non-Tg mice. These observations suggest that the s.c. infection with subsp. induced arthritis in the ankle joints of CD46 Tg mice as a consequence of the prolonged inflammation associated with focal bone loss.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.034108-0
2011-12-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/60/12/1860.html?itemId=/content/journal/jmm/10.1099/jmm.0.034108-0&mimeType=html&fmt=ahah

References

  1. Abdollahi-Roodsaz S., Joosten L. A., Helsen M. M., Walgreen B., Van Lent P. L., Van den Bersselaar L. A., Koenders M. I., Van den Berg W. B. 2008; Shift from Toll-like receptor 2 (TLR-2) toward TLR-4 dependency in the erosive stage of chronic streptococcal cell wall arthritis coincident with TLR-4-mediated interleukin-17 production. Arthritis Rheum 58:3753–3764 [View Article][PubMed]
    [Google Scholar]
  2. Boyce B. F., Xing L. 2007a; The RANKL/RANK/OPG pathway. Curr Osteoporos Rep 5:98–104 [View Article][PubMed]
    [Google Scholar]
  3. Boyce B. F., Xing L. 2007b; Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther 9:Suppl. 1S1 [View Article][PubMed]
    [Google Scholar]
  4. Bramhachari P. V., Kaul S. Y., McMillan D. J., Shaila M. S., Karmarkar M. G., Sriprakash K. S. 2010; Disease burden due to Streptococcus dysgalactiae subsp. equisimilis (group G and C streptococcus) is higher than that due to Streptococcus pyogenes among Mumbai school children. J Med Microbiol 59:220–223 [View Article][PubMed]
    [Google Scholar]
  5. Brandt C. M., Spellerberg B. 2009; Human infections due to Streptococcus dysgalactiae subspecies equisimilis . Clin Infect Dis 49:766–772 [View Article][PubMed]
    [Google Scholar]
  6. Broyles L. N., Van Beneden C., Beall B., Facklam R., Shewmaker P. L., Malpiedi P., Daily P., Reingold A., Farley M. M. 2009; Population-based study of invasive disease due to β-hemolytic streptococci of groups other than A and B. Clin Infect Dis 48:706–712 [View Article][PubMed]
    [Google Scholar]
  7. Cardone J., Le Friec G., Vantourout P., Roberts A., Fuchs A., Jackson I., Suddason T., Lord G., Atkinson J. P. et al. other authors 2010; Complement regulator CD46 temporally regulates cytokine production by conventional and unconventional T cells. Nat Immunol 11:862–871 [View Article][PubMed]
    [Google Scholar]
  8. Davies M. R., McMillan D. J., Beiko R. G., Barroso V., Geffers R., Sriprakash K. S., Chhatwal G. S. 2007; Virulence profiling of Streptococcus dysgalactiae subspecies equisimilis isolated from infected humans reveals 2 distinct genetic lineages that do not segregate with their phenotypes or propensity to cause diseases. Clin Infect Dis 44:1442–1454 [View Article][PubMed]
    [Google Scholar]
  9. Gillespie M. T. 2007; Impact of cytokines and T lymphocytes upon osteoclast differentiation and function. Arthritis Res Ther 9:103 [View Article][PubMed]
    [Google Scholar]
  10. Greenspan A., Tehranzadeh J. 2001; Imaging of infectious arthritis. Radiol Clin North Am 39:267–276 [View Article][PubMed]
    [Google Scholar]
  11. Hamdy N. A. 2007; Targeting the RANK/RANKL/OPG signaling pathway: a novel approach in the management of osteoporosis. Curr Opin Investig Drugs 8:299–303[PubMed]
    [Google Scholar]
  12. Hot A., Miossec P. 2011; Effects of interleukin (IL)-17A and IL-17F in human rheumatoid arthritis synoviocytes. Ann Rheum Dis 70:727–732 [View Article][PubMed]
    [Google Scholar]
  13. Jonsson I. M., Pietrocola G., Speziale P., Verdrengh M., Tarkowski A. 2005; Role of fibrinogen-binding adhesin expression in septic arthritis and septicemia caused by Streptococcus agalactiae . J Infect Dis 192:1456–1464 [View Article][PubMed]
    [Google Scholar]
  14. Joosten L. A., Abdollahi-Roodsaz S., Heuvelmans-Jacobs M., Helsen M. M., Van den Bersselaar L. A., Oppers-Walgreen B., Koenders M. I., Van den Berg W. B. 2008; T cell dependence of chronic destructive murine arthritis induced by repeated local activation of Toll-like receptor-driven pathways: crucial role of both interleukin-1beta and interleukin-17. Arthritis Rheum 58:98–108 [View Article][PubMed]
    [Google Scholar]
  15. Kemper C., Verbsky J. W., Price J. D., Atkinson J. P. 2005; T-cell stimulation and regulation: with complements from CD46. Immunol Res 32:31–43 [View Article][PubMed]
    [Google Scholar]
  16. Kitami S., Tanaka H., Kawato T., Tanabe N., Katono-Tani T., Zhang F., Suzuki N., Yonehara Y., Maeno M. 2010; IL-17A suppresses the expression of bone resorption-related proteinases and osteoclast differentiation via IL-17RA or IL-17RC receptors in RAW264.7 cells. Biochimie 92:398–404 [View Article][PubMed]
    [Google Scholar]
  17. Lövkvist L., Sjölinder H., Wehelie R., Aro H., Norrby-Teglund A., Plant L., Jonsson A. B. 2008; CD46 contributes to the severity of group A streptococcal infection. Infect Immun 76:3951–3958 [View Article][PubMed]
    [Google Scholar]
  18. Lubberts E. 2008; IL-17/Th17 targeting: on the road to prevent chronic destructive arthritis?. Cytokine 41:84–91 [View Article][PubMed]
    [Google Scholar]
  19. Lubberts E. 2010; Th17 cytokines and arthritis. Semin Immunopathol 32:43–53 [View Article][PubMed]
    [Google Scholar]
  20. Matsui H., Sekiya Y., Nakamura M., Murayama S. Y., Yoshida H., Takahashi T., Imanishi K., Tsuchimoto K., Uchiyama T. et al. other authors 2009; CD46 transgenic mouse model of necrotizing fasciitis caused by Streptococcus pyogenes infection. Infect Immun 77:4806–4814 [View Article][PubMed]
    [Google Scholar]
  21. Matsui H., Sekiya Y., Takahashi T., Nakamura M., Imanishi K., Yoshida H., Murayama S. Y., Takahashi T., Tsuchimoto K. et al. other authors 2011; Dermal mast cells reduce progressive tissue necrosis caused by subcutaneous infection with Streptococcus pyogenes in mice. J Med Microbiol 60:128–134 [View Article][PubMed]
    [Google Scholar]
  22. Maurer M., Lopez Kostka S., Siebenhaar F., Moelle K., Metz M., Knop J., Von Stebut E. 2006; Skin mast cells control T cell-dependent host defense in Leishmania major infections. FASEB J 20:2460–2467 [View Article][PubMed]
    [Google Scholar]
  23. Okada N., Pentland A. P., Falk P., Caparon M. G. 1994; M protein and protein F act as important determinants of cell-specific tropism of Streptococcus pyogenes in skin tissue. J Clin Invest 94:965–977 [View Article][PubMed]
    [Google Scholar]
  24. Okada N., Liszewski M. K., Atkinson J. P., Caparon M. 1995; Membrane cofactor protein (CD46) is a keratinocyte receptor for the M protein of the group A streptococcus. Proc Natl Acad Sci U S A 92:2489–2493 [View Article][PubMed]
    [Google Scholar]
  25. Perez-Casal J., Okada N., Caparon M. G., Scott J. R. 1995; Role of the conserved C-repeat region of the M protein of Streptococcus pyogenes . Mol Microbiol 15:907–916 [View Article][PubMed]
    [Google Scholar]
  26. Pettit A. R., Ji H., Von Stechow D., Müller R., Goldring S. R., Choi Y., Benoist C., Gravallese E. M. 2001; TRANCE/RANKL knockout mice are protected from bone erosion in a serum transfer model of arthritis. Am J Pathol 159:1689–1699 [View Article][PubMed]
    [Google Scholar]
  27. Rantala S., Vahakuopus S., Vuopio-Varkila J., Vuento R., Syrjanen J. 2010; Streptococcus dysgalactiae subsp. equisimilis bacteremia, Finland, 1995–2004. Emerg Infect Dis 16:843–846[PubMed] [CrossRef]
    [Google Scholar]
  28. Richards A., Kathryn Liszewski M., Kavanagh D., Fang C. J., Moulton E., Fremeaux-Bacchi V., Remuzzi G., Noris M., Goodship T. H., Atkinson J. P. 2007; Implications of the initial mutations in membrane cofactor protein (MCP; CD46) leading to atypical hemolytic uremic syndrome. Mol Immunol 44:111–122 [View Article][PubMed]
    [Google Scholar]
  29. Riley-Vargas R. C., Gill D. B., Kemper C., Liszewski M. K., Atkinson J. P. 2004; CD46: expanding beyond complement regulation. Trends Immunol 25:496–503 [View Article][PubMed]
    [Google Scholar]
  30. Ritchlin C. T., Haas-Smith S. A., Li P., Hicks D. G., Schwarz E. M. 2003; Mechanisms of TNF-α- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J Clin Invest 111:821–831[PubMed] [CrossRef]
    [Google Scholar]
  31. Ritchlin C. T., Schwarz E. M., O’Keefe R. J., Looney R. J. 2004; RANK, RANKL and OPG in inflammatory arthritis and periprosthetic osteolysis. J Musculoskelet Neuronal Interact 4:276–284[PubMed]
    [Google Scholar]
  32. Romas E., Gillespie M. T., Martin T. J. 2002; Involvement of receptor activator of NFκB ligand and tumor necrosis factor-α in bone destruction in rheumatoid arthritis. Bone 30:340–346 [View Article][PubMed]
    [Google Scholar]
  33. Sakurai A., Okahashi N., Nakagawa I., Kawabata S., Amano A., Ooshima T., Hamada S. 2003; Streptococcus pyogenes infection induces septic arthritis with increased production of the receptor activator of the NF-κB ligand. Infect Immun 71:6019–6026 [View Article][PubMed]
    [Google Scholar]
  34. Seya T., Turner J. R., Atkinson J. P. 1986; Purification and characterization of a membrane protein (gp45-70) that is a cofactor for cleavage of C3b and C4b. J Exp Med 163:837–855 [View Article][PubMed]
    [Google Scholar]
  35. Shimomura Y., Okumura K., Murayama S. Y., Yagi J., Ubukata K., Kirikae T., Miyoshi-Akiyama T. 2011; Complete genome sequencing and analysis of a Lancefield group G Streptococcus dysgalactiae subsp. equisimilis strain causing streptococcal toxic shock syndrome (STSS). BMC Genomics 12:17 [View Article][PubMed]
    [Google Scholar]
  36. Sing A., Trebesius K., Heesemann J. 2001; Diagnosis of Streptococcus dysgalactiae subspecies equisimilis (group C streptococci) associated with deep soft tissue infections using fluorescent in situ hybridization. Eur J Clin Microbiol Infect Dis 20:146–149 [View Article][PubMed]
    [Google Scholar]
  37. Sun H., Ringdahl U., Homeister J. W., Fay W. P., Engleberg N. C., Yang A. Y., Rozek L. S., Wang X., Sjöbring U., Ginsburg D. 2004; Plasminogen is a critical host pathogenicity factor for group A streptococcal infection. Science 305:1283–1286 [View Article][PubMed]
    [Google Scholar]
  38. Sylvetsky N., Raveh D., Schlesinger Y., Rudensky B., Yinnon A. M. 2002; Bacteremia due to β-hemolytic Streptococcus group G: increasing incidence and clinical characteristics of patients. Am J Med 112:622–626 [View Article][PubMed]
    [Google Scholar]
  39. Takahashi T., Asami R., Tanabe K., Hirono Y., Nozawa Y., Chiba N., Ubukata K. 2010a; Clinical aspects of invasive infection with Streptococcus dysgalactiae subsp. equisimilis in elderly patients. J Infect Chemother 16:68–71 [View Article][PubMed]
    [Google Scholar]
  40. Takahashi T., Sunaoshi K., Sunakawa K., Fujishima S., Watanabe H., Ubukata K. the Invasive Streptococcal Disease Working Group 2010b; Clinical aspects of invasive infections with Streptococcus dysgalactiae ssp. equisimilis in Japan: differences with respect to Streptococcus pyogenes and Streptococcus agalactiae infections. Clin Microbiol Infect 16:1097–1103 [View Article][PubMed]
    [Google Scholar]
  41. Takahashi T., Ubukata K., Watanabe H. 2011; Invasive infection caused by Streptococcus dysgalactiae subsp. equisimilis: characteristics of strains and clinical features. J Infect Chemother 17:1–10 [View Article][PubMed]
    [Google Scholar]
  42. Udagawa N. 2003; The mechanism of osteoclast differentiation from macrophages: possible roles of T lymphocytes in osteoclastogenesis. J Bone Miner Metab 21:337–343 [View Article][PubMed]
    [Google Scholar]
  43. Wang G., Liszewski M. K., Chan A. C., Atkinson J. P. 2000; Membrane cofactor protein (MCP; CD46): isoform-specific tyrosine phosphorylation. J Immunol 164:1839–1846[PubMed] [CrossRef]
    [Google Scholar]
  44. Yasuda H., Shima N., Nakagawa N., Mochizuki S. I., Yano K., Fujise N., Sato Y., Goto M., Yamaguchi K. et al. other authors 1998a; Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro . Endocrinology 139:1329–1337 [View Article][PubMed]
    [Google Scholar]
  45. Yasuda H., Shima N., Nakagawa N., Yamaguchi K., Kinosaki M., Mochizuki S., Tomoyasu A., Yano K., Goto M. et al. other authors 1998b; Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95:3597–3602 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.034108-0
Loading
/content/journal/jmm/10.1099/jmm.0.034108-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error