1887

Abstract

Silver nanoparticles (nano-Ags), which have well-known antimicrobial properties, are used extensively in various medical and general applications. In this study, the combination effects between nano-Ags and the conventional antibiotics ampicillin, chloramphenicol and kanamycin against various pathogenic bacteria were investigated. The MIC and fractional inhibitory concentration index (FICI) were determined to confirm antibacterial susceptibility and synergistic effects. The results showed that nano-Ags possessed antibacterial effects and synergistic activities. The antibiofilm activities of nano-Ags alone or in combination with antibiotics were also investigated. Formation of biofilm is associated with resistance to antimicrobial agents and chronic bacterial infections. The results indicated that nano-Ags also had antibiofilm activities. To understand these effects of nano-Ags, an ATPase inhibitor assay, permeability assay and hydroxyl radical assay were conducted. The antibacterial activity of nano-Ags was influenced by ATP-associated metabolism rather than by the permeability of the outer membrane. Additionally, nano-Ags generated hydroxyl radicals, a highly reactive oxygen species induced by bactericidal agents. It was concluded that nano-Ags have potential as a combination therapeutic agent for the treatment of infectious diseases by bacteria.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.047100-0
2012-12-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/61/12/1719.html?itemId=/content/journal/jmm/10.1099/jmm.0.047100-0&mimeType=html&fmt=ahah

References

  1. Archer G. L. 1998; Staphylococcus aureus: a well-armed pathogen. Clin Infect Dis 26:1179–1181 [View Article][PubMed]
    [Google Scholar]
  2. Atiyeh B. S., Costagliola M., Hayek S. N., Dibo S. A. 2007; Effect of silver on burn wound infection control and healing: review of the literature. Burns 33:139–148 [View Article][PubMed]
    [Google Scholar]
  3. Christensen G. D., Simpson W. A., Younger J. J., Baddour L. M., Barrett F. F., Melton D. M., Beachey E. H. 1985; Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22:996–1006[PubMed]
    [Google Scholar]
  4. CLSI 2003 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. Approved standard M7–A6 Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  5. CLSI 2005. Performance Standards for Antimicrobial Susceptibility Testing, Fifteenth Informational Supplement. Approved standard M100–S15 Wayne, PA: Clinical and Laboratory Standards Institute;
    [Google Scholar]
  6. Costerton J. W. 1999; Introduction to biofilm. Int J Antimicrob Agents 11:217–221, discussion 237–239 [View Article][PubMed]
    [Google Scholar]
  7. Costerton J. W., Irvin R. T., Cheng K. J. 1981; The bacterial glycocalyx in nature and disease. Annu Rev Microbiol 35:299–324 [View Article][PubMed]
    [Google Scholar]
  8. Eliopoulos G. M., Moellering R. C. 1991; Antimicrobial combinations. In Antibiotics in Laboratory Medicine, 3rd edn. pp. 432–492 Edited by Lorian V. Baltimore, MD: Williams & Wilkins;
    [Google Scholar]
  9. Gonçalves P. P., Meireles S. M., Neves P., Vale M. G. 1999; Synaptic vesicle Ca2+/H+ antiport: dependence on the proton electrochemical gradient. Brain Res Mol Brain Res 71:178–184 [View Article][PubMed]
    [Google Scholar]
  10. Gurunathan S., Lee K. J., Kalishwaralal K., Sheikpranbabu S., Vaidyanathan R., Eom S. H. 2009; Antiangiogenic properties of silver nanoparticles. Biomaterials 30:6341–6350 [View Article][PubMed]
    [Google Scholar]
  11. Hojo K., Nagaoka S., Ohshima T., Maeda N. 2009; Bacterial interactions in dental biofilm development. J Dent Res 88:982–990 [View Article][PubMed]
    [Google Scholar]
  12. Hwang I.-S., Lee J., Hwang J. H., Kim K.-J., Lee D. G. 2012; Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. FEBS J 279:1327–1338 [View Article][PubMed]
    [Google Scholar]
  13. Jung H. J., Lee D. G. 2008; Synergistic antibacterial effect between silybin and N,N′-dicyclohexylcarbodiimide in clinical Pseudomonas aeruginosa isolates. J Microbiol 46:462–467 [View Article][PubMed]
    [Google Scholar]
  14. Khardori N., Yassien M. 1995; Biofilms in device-related infections. J Ind Microbiol 15:141–147 [View Article][PubMed]
    [Google Scholar]
  15. Kim K.-J., Sung W. S., Suh B. K., Moon S.-K., Choi J.-S., Kim J. G., Lee D. G. 2009; Antifungal activity and mode of action of silver nano-particles on Candida albicans . Biometals 22:235–242 [View Article][PubMed]
    [Google Scholar]
  16. Kim J.-S., Heo P., Yang T.-J., Lee K.-S., Jin Y.-S., Kim S.-K., Shin D., Kweon D.-H. 2011; Bacterial persisters tolerate antibiotics by not producing hydroxyl radicals. Biochem Biophys Res Commun 413:105–110 [View Article][PubMed]
    [Google Scholar]
  17. Klasen H. J. 2000; Historical review of the use of silver in the treatment of burns. I. Early uses. Burns 26:117–130 [View Article][PubMed]
    [Google Scholar]
  18. Kohanski M. A., Dwyer D. J., Hayete B., Lawrence C. A., Collins J. J. 2007; A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130:797–810 [View Article][PubMed]
    [Google Scholar]
  19. Lau G. W., Hassett D. J., Britigan B. E. 2005; Modulation of lung epithelial functions by Pseudomonas aeruginosa . Trends Microbiol 13:389–397 [View Article][PubMed]
    [Google Scholar]
  20. Levy S. B. 1992; Active efflux mechanisms for antimicrobial resistance. Antimicrob Agents Chemother 36:695–703 [View Article][PubMed]
    [Google Scholar]
  21. Li P., Li J., Wu C., Wu Q., Li J. 2005; Synergistic antibacterial effects of β-lactam antibiotic combined with silver nanoparticles. Nanotechnology 16:1912–1917 [View Article]
    [Google Scholar]
  22. Linnett P. E., Beechey R. B. 1979; Inhibitors of the ATP synthetase systems. Methods Enzymol 55:472–518 [View Article][PubMed]
    [Google Scholar]
  23. Lynch S. V., Dixon L., Benoit M. R., Brodie E. L., Keyhan M. P., Hu P., Ackerley D. F., Andersen G. L., Matin A. 2007; Role of the rapA gene in controlling antibiotic resistance of Escherichia coli biofilms. Antimicrob Agents Chemother 51:3650–3658 [CrossRef]
    [Google Scholar]
  24. Monroe D. 2007; Looking for chinks in the armor of bacterial biofilms. PLoS Biol 5:e307 [View Article][PubMed]
    [Google Scholar]
  25. Nadworny P. L., Wang J., Tredget E. E., Burrell R. E. 2008; Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model. Nanomedicine 4:241–251 [View Article][PubMed]
    [Google Scholar]
  26. Odds F. C. 2003; Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 52:1 [View Article][PubMed]
    [Google Scholar]
  27. Paju S., Scannapieco F. A. 2007; Oral biofilms, periodontitis, and pulmonary infections. Oral Dis 13:508–512 [View Article][PubMed]
    [Google Scholar]
  28. Palmer J. 2006; Bacterial biofilms in chronic rhinosinusitis. Ann Otol Rhinol Laryngol Suppl 196:35–39[PubMed]
    [Google Scholar]
  29. Pankey G. A., Ashcraft D. S. 2005; In vitro synergy of ciprofloxacin and gatifloxacin against ciprofloxacin-resistant Pseudomonas aeruginosa . Antimicrob Agents Chemother 49:2959–2964 [View Article][PubMed]
    [Google Scholar]
  30. Rogers J. V., Parkinson C. V., Choi Y. W., Speshock J. L., Hussain S. M. 2008; A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res Lett 3:129–133 [View Article]
    [Google Scholar]
  31. Ruden S., Hilpert K., Berditsch M., Wadhwani P., Ulrich A. S. 2009; Synergistic interaction between silver nanoparticles and membrane-permeabilizing antimicrobial peptides. Antimicrob Agents Chemother 53:3538–3540 [View Article][PubMed]
    [Google Scholar]
  32. Ruparelia J. P., Chatterjee A. K., Duttagupta S. P., Mukherji S. 2008; Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716 [View Article][PubMed]
    [Google Scholar]
  33. Shrivastava S., Bera T., Roy A., Singh G., Ramachandrarao P., Dash D. 2007; Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18:225103–225112 [View Article]
    [Google Scholar]
  34. Sintubin L., De Windt W., Dick J., Mast J., van der Ha D., Verstraete W., Boon N. 2009; Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84:741–749 [View Article][PubMed]
    [Google Scholar]
  35. Swallow C. J., Grinstein S., Rotstein O. D. 1990; A vacuolar type H+-ATPase regulates cytoplasmic pH in murine macrophages. J Biol Chem 265:7645–7654[PubMed]
    [Google Scholar]
  36. Venkatesh M., Rong L., Raad I., Versalovic J. 2009; Novel synergistic antibiofilm combinations for salvage of infected catheters. J Med Microbiol 58:936–944 [View Article][PubMed]
    [Google Scholar]
  37. Wagner V. E., Iglewski B. H. 2008; P. aeruginosa biofilms in CF infection. Clin Rev Allergy Immunol 35:124–134 [View Article][PubMed]
    [Google Scholar]
  38. Wei G. X., Campagna A. N., Bobek L. A. 2006; Effect of MUC7 peptides on the growth of bacteria and on Streptococcus mutans biofilm. J Antimicrob Chemother 57:1100–1109 [View Article][PubMed]
    [Google Scholar]
  39. Weisblum B., Davies J. 1968; Antibiotic inhibitors of the bacterial ribosome. Bacteriol Rev 32:493–528[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.047100-0
Loading
/content/journal/jmm/10.1099/jmm.0.047100-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error