1887

Abstract

One hundred and twenty-one isolates of complex were collected from seven Korean hospitals. Species and groups were identified using partial gene sequences and antimicrobial susceptibility testing was performed using a broth microdilution method. Based on partial gene sequences, 118 isolates were identified as belonging to complex, including , , , and . The isolates were further divided into three groups, I to III. groups II and III were clustered into clade A with and ; group I was clustered into clade B with and . For all complex isolates, the resistance rate to trimethoprim/sulfamethoxazole (TMP/SMX) was very high (30.5 %). Antimicrobial resistance rates varied among species or groups of complex. Isolates of clade A showed significantly lower antimicrobial resistance rates than those of clade B; while 25 % of clade A isolates were multidrug resistant, 46 % of clade B isolates were multidrug resistant ( = 0.001). The finding of high antimicrobial resistance rates, particularly to TMP/SMX, among complex isolates from Korea, and the existence of distinct groups among the isolates, with differences in antimicrobial resistance rates, suggests consideration of alternative agents to TMP/SMX to treat infections and indicates the importance of accurate identification for appropriate selection of treatment options.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.053355-0
2013-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/5/748.html?itemId=/content/journal/jmm/10.1099/jmm.0.053355-0&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kim H., Park J. Y., Wakabayashi H., Oyaizu H. 2000; Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589 [View Article][PubMed]
    [Google Scholar]
  2. Berg G., Roskot N., Smalla K. 1999; Genotypic and phenotypic relationships between clinical and environmental isolates of Stenotrophomonas maltophilia. J Clin Microbiol 37:3594–3600[PubMed]
    [Google Scholar]
  3. Brooke J. S. 2012; Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev 25:2–41 [View Article][PubMed]
    [Google Scholar]
  4. Cho H. H., Sung J. Y., Kwon K. C., Koo S. H. 2012; Expression of Sme efflux pumps and multilocus sequence typing in clinical isolates of Stenotrophomonas maltophilia. Ann Lab Med 32:38–43 [View Article][PubMed]
    [Google Scholar]
  5. Chung H. S., Hong S. G., Lee Y., Kim M., Yong D., Jeong S. H., Lee K., Chong Y. 2012; Antimicrobial susceptibility of Stenotrophomonas maltophilia isolates from a Korean tertiary care hospital. Yonsei Med J 53:439–441 [View Article][PubMed]
    [Google Scholar]
  6. CLSI (2009). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically M07-A8; Approved Standard, 8th edn. Wayne, PA: Clinical and Laboratory Standards Institute
  7. CLSI (2011). Performance Standards For Antimicrobial Susceptibility Testing, 21st Informational Supplement, M100-S21. Wayne, PA: Clinical and Laboratory Standards Institute
  8. Coenye T., Vanlaere E., LiPuma J. J., Vandamme P. 2004a; Identification of genomic groups in the genus Stenotrophomonas using gyrB RFLP analysis. FEMS Immunol Med Microbiol 40:181–185 [View Article][PubMed]
    [Google Scholar]
  9. Coenye T., Vanlaere E., Falsen E., Vandamme P. 2004b; Stenotrophomonas africana Drancourt et al. 1997 is a later synonym of Stenotrophomonas maltophilia (Hugh 1981) Palleroni and Bradbury 1993. Int J Syst Evol Microbiol 54:1235–1237 [View Article][PubMed]
    [Google Scholar]
  10. Farrell D. J., Sader H. S., Jones R. N. 2010; Antimicrobial susceptibilities of a worldwide collection of Stenotrophomonas maltophilia isolates tested against tigecycline and agents commonly used for S. maltophilia infections. Antimicrob Agents Chemother 54:2735–2737 [View Article][PubMed]
    [Google Scholar]
  11. Garazi M., Singer C., Tai J., Ginocchio C. C. 2012; Bloodstream infections caused by Stenotrophomonas maltophilia: a seven-year review. J Hosp Infect 81:114–118 [View Article][PubMed]
    [Google Scholar]
  12. Gould V. C., Okazaki A., Howe R. A., Avison M. B. 2004; Analysis of sequence variation among smeDEF multi drug efflux pump genes and flanking DNA from defined 16S rRNA subgroups of clinical Stenotrophomonas maltophilia isolates. J Antimicrob Chemother 54:348–353 [View Article][PubMed]
    [Google Scholar]
  13. Gould V. C., Okazaki A., Avison M. B. 2006; β-Lactam resistance and β-lactamase expression in clinical Stenotrophomonas maltophilia isolates having defined phylogenetic relationships. J Antimicrob Chemother 57:199–203 [View Article][PubMed]
    [Google Scholar]
  14. Kaiser S., Biehler K., Jonas D. A. 2009; A Stenotrophomonas maltophilia multilocus sequence typing scheme for inferring population structure. J Bacteriol 191:2934–2943 [View Article][PubMed]
    [Google Scholar]
  15. Liaw S. J., Lee Y. L., Hsueh P. R. 2010; Multidrug resistance in clinical isolates of Stenotrophomonas maltophilia: roles of integrons, efflux pumps, phosphoglucomutase (SpgM), and melanin and biofilm formation. Int J Antimicrob Agents 35:126–130 [View Article][PubMed]
    [Google Scholar]
  16. Looney W. J., Narita M., Mühlemann K. 2009; Stenotrophomonas maltophilia: an emerging opportunist human pathogen. Lancet Infect Dis 9:312–323 [View Article][PubMed]
    [Google Scholar]
  17. Minkwitz A., Berg G. 2001; Comparison of antifungal activities and 16S ribosomal DNA sequences of clinical and environmental isolates of Stenotrophomonas maltophilia. J Clin Microbiol 39:139–145 [View Article][PubMed]
    [Google Scholar]
  18. Nicodemo A. C., Araujo M. R., Ruiz A. S., Gales A. C. 2004; In vitro susceptibility of Stenotrophomonas maltophilia isolates: comparison of disc diffusion, Etest and agar dilution methods. J Antimicrob Chemother 53:604–608 [View Article][PubMed]
    [Google Scholar]
  19. Ramos P. L., Van Trappen S., Thompson F. L., Rocha R. C. S., Barbosa H. R., De Vos P., Moreira-Filho C. A. 2011; Screening for endophytic nitrogen-fixing bacteria in Brazilian sugar cane varieties used in organic farming and description of Stenotrophomonas pavanii sp. nov.. Int J Syst Evol Microbiol 61:926–931 [View Article][PubMed]
    [Google Scholar]
  20. Song J. H., Sung J. Y., Kwon K. C., Park J. W., Cho H. H., Shin S. Y., Ko Y. H., Kim J. M., Shin K. S., Koo S. H. 2010; Analysis of acquired resistance genes in Stenotrophomonas maltophilia. Korean J Lab Med 30:295–300 (in Korean) [View Article][PubMed]
    [Google Scholar]
  21. Svensson-Stadler L. A., Mihaylova S. A., Moore E. R. 2012; Stenotrophomonas interspecies differentiation and identification by gyrB sequence analysis. FEMS Microbiol Lett 327:15–24 [View Article][PubMed]
    [Google Scholar]
  22. Tan C. K., Liaw S. J., Yu C. J., Teng L. J., Hsueh P. R. 2008; Extensively drug-resistant Stenotrophomonas maltophilia in a tertiary care hospital in Taiwan: microbiologic characteristics, clinical features, and outcomes. Diagn Microbiol Infect Dis 60:205–210 [View Article][PubMed]
    [Google Scholar]
  23. Toleman M. A., Bennett P. M., Bennett D. M. C., Jones R. N., Walsh T. R. 2007; Global emergence of trimethoprim/sulfamethoxazole resistance in Stenotrophomonas maltophilia mediated by acquisition of sul genes. Emerg Infect Dis 13:559–565 [View Article][PubMed]
    [Google Scholar]
  24. Valdezate S., Vindel A., Martín-Dávila P., Del Saz B. S., Baquero F., Cantón R. 2004; High genetic diversity among Stenotrophomonas maltophilia strains despite their originating at a single hospital. J Clin Microbiol 42:693–699 [View Article][PubMed]
    [Google Scholar]
  25. Valenza G., Tappe D., Turnwald D., Frosch M., König C., Hebestreit H., Abele-Horn M. 2008; Prevalence and antimicrobial susceptibility of microorganisms isolated from sputa of patients with cystic fibrosis. J Cyst Fibros 7:123–127 [View Article][PubMed]
    [Google Scholar]
  26. Wu H., Wang J. T., Shiau Y. R., Wang H. Y., Lauderdale T. L. Y., Chang S. C.TSAR Hospitals 2012; A multicenter surveillance of antimicrobial resistance on Stenotrophomonas maltophilia in Taiwan. J Microbiol Immunol Infect 45:120–126 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.053355-0
Loading
/content/journal/jmm/10.1099/jmm.0.053355-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error