1887

Abstract

Fusidic acid (FA) resistance in markedly varied among different regions. Few data for FA resistance are available in China. In this study, FA susceptibility testing was performed, and the prevalence of and in 116 clinical isolates of was investigated by PCR. Mutations in were also determined by sequencing of PCR products. Molecular typing of -positive strains was based on multilocus sequence typing (MLST), typing and pulsed-field gel electrophoresis (PFGE). A DNA fragment flanking was sequenced. Transformation experiments were carried out in -positive . Of 116 including 19 meticillin-resistant (MRSA) and 97 meticillin-susceptible (MSSA), four (3.5 %) were resistant to FA with MICs of 6–12 µg ml, including one MRSA from blood and three MSSA from wound exudates. All four FA-resistant isolates were found to be gene positive. Three FA-resistant MSSA strains had the same MLST profile of ST630 and type of t377, whilst the MRSA strain belonged to ST630-t4549. Only one PFGE pattern was recognized for these four strains. No and mutations were detected in any of the isolates. FA resistance in -positive clinical isolates could be transferred to RN4220. The gene was located in a transposon-like element, which had 99 % identity with that found in pUB101. In conclusion, the FA resistance rate is low in , and the gene is responsible for the resistance.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.058305-0
2013-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/8/1199.html?itemId=/content/journal/jmm/10.1099/jmm.0.058305-0&mimeType=html&fmt=ahah

References

  1. Carriço J. A., Pinto F. R., Simas C., Nunes S., Sousa N. G., Frazão N., de Lencastre H., Almeida J. S. 2005; Assessment of band-based similarity coefficients for automatic type and subtype classification of microbial isolates analyzed by pulsed-field gel electrophoresis. J Clin Microbiol 43:5483–5490 [View Article][PubMed]
    [Google Scholar]
  2. Castanheira M., Watters A. A., Bell J. M., Turnidge J. D., Jones R. N. 2010a; Fusidic acid resistance rates and prevalence of resistance mechanisms among Staphylococcus spp. isolated in North America and Australia, 2007-2008. Antimicrob Agents Chemother 54:3614–3617 [View Article][PubMed]
    [Google Scholar]
  3. Castanheira M., Watters A. A., Mendes R. E., Farrell D. J., Jones R. N. 2010b; Occurrence and molecular characterization of fusidic acid resistance mechanisms among Staphylococcus spp. from European countries (2008). J Antimicrob Chemother 65:1353–1358 [View Article][PubMed]
    [Google Scholar]
  4. Chen H. J., Hung W. C., Tseng S. P., Tsai J. C., Hsueh P. R., Teng L. J. 2010; Fusidic acid resistance determinants in Staphylococcus aureus clinical isolates. Antimicrob Agents Chemother 54:4985–4991 [View Article][PubMed]
    [Google Scholar]
  5. Chen C. M., Huang M., Chen H. F., Ke S. C., Li C. R., Wang J. H., Wu L. T. 2011; Fusidic acid resistance among clinical isolates of methicillin-resistant Staphylococcus aureus in a Taiwanese hospital. BMC Microbiol 11:98 [View Article][PubMed]
    [Google Scholar]
  6. CLSI 2012; Performance standards for antimicrobial susceptibility testing; Twenty-second informational supplement. CLSI document M100-S22 72–90
  7. Cox G., Thompson G. S., Jenkins H. T., Peske F., Savelsbergh A., Rodnina M. V., Wintermeyer W., Homans S. W., Edwards T. A., O’Neill A. J. 2012; Ribosome clearance by FusB-type proteins mediates resistance to the antibiotic fusidic acid. Proc Natl Acad Sci U S A 109:2102–2107 [View Article][PubMed]
    [Google Scholar]
  8. EUCAST 2011; Breakpoint tables for interpretation of MICs and zone diameters. , Version 1.3. European Committee on Antimicrobial Susceptibility Testing http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/EUCAST_breakpoints_v1.3_pdf.pdf
  9. Fernandes C. J., Fernandes L. A., Collignon P.Australian Group on Antimicrobial Resistance 2005; Cefoxitin resistance as a surrogate marker for the detection of methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 55:506–510 [View Article][PubMed]
    [Google Scholar]
  10. Hiramatsu K., Katayama Y., Yuzawa H., Ito T. 2002; Molecular genetics of methicillin-resistant Staphylococcus aureus. Int J Med Microbiol 292:67–74 [View Article][PubMed]
    [Google Scholar]
  11. Ho P. L., Chiu S. S., Chan M. Y., Gan Y., Chow K. H., Lai E. L., Lau Y. L. 2012; Molecular epidemiology and nasal carriage of Staphylococcus aureus and methicillin-resistant S. aureus among young children attending day care centers and kindergartens in Hong Kong. J Infect 64:500–506 [View Article][PubMed]
    [Google Scholar]
  12. Koreen L., Ramaswamy S. V., Graviss E. A., Naidich S., Musser J. M., Kreiswirth B. N. 2004; spa typing method for discriminating among Staphylococcus aureus isolates: implications for use of a single marker to detect genetic micro- and macrovariation. J Clin Microbiol 42:792–799 [View Article][PubMed]
    [Google Scholar]
  13. Liu Y., Geng W., Yang Y., Wang C., Zheng Y., Shang Y., Wu D., Li X., Wang L. other authors 2012; Susceptibility to and resistance determinants of fusidic acid in Staphylococcus aureus isolated from Chinese children with skin and soft tissue infections. FEMS Immunol Med Microbiol 64:212–218 [View Article][PubMed]
    [Google Scholar]
  14. McClure J. A., Conly J. M., Lau V., Elsayed S., Louie T., Hutchins W., Zhang K. 2006; Novel multiplex PCR assay for detection of the staphylococcal virulence marker Panton–Valentine leukocidin genes and simultaneous discrimination of methicillin-susceptible from -resistant staphylococci. J Clin Microbiol 44:1141–1144 [View Article][PubMed]
    [Google Scholar]
  15. McDougal L. K., Steward C. D., Killgore G. E., Chaitram J. M., McAllister S. K., Tenover F. C. 2003; Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J Clin Microbiol 41:5113–5120 [View Article][PubMed]
    [Google Scholar]
  16. McLaws F. B., Larsen A. R., Skov R. L., Chopra I., O’Neill A. J. 2011; Distribution of fusidic acid resistance determinants in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 55:1173–1176 [View Article][PubMed]
    [Google Scholar]
  17. Mendes R. E., Sader H. S., Deshpande L. M., Diep B. A., Chambers H. F., Jones R. N. 2010; Characterization of baseline methicillin-resistant Staphylococcus aureus isolates recovered from phase IV clinical trial for linezolid. J Clin Microbiol 48:568–574 [View Article][PubMed]
    [Google Scholar]
  18. Nair D., Memmi G., Hernandez D., Bard J., Beaume M., Gill S., Francois P., Cheung A. L. 2011; Whole-genome sequencing of Staphylococcus aureus strain RN4220, a key laboratory strain used in virulence research, identifies mutations that affect not only virulence factors but also the fitness of the strain. J Bacteriol 193:2332–2335 [View Article][PubMed]
    [Google Scholar]
  19. O’Brien F. G., Price C., Grubb W. B., Gustafson J. E. 2002; Genetic characterization of the fusidic acid and cadmium resistance determinants of Staphylococcus aureus plasmid pUB101. J Antimicrob Chemother 50:313–321 [View Article][PubMed]
    [Google Scholar]
  20. O’Neill A. J., Chopra I. 2006; Molecular basis of fusB-mediated resistance to fusidic acid in Staphylococcus aureus. Mol Microbiol 59:664–676 [View Article][PubMed]
    [Google Scholar]
  21. O’Neill A. J., Larsen A. R., Henriksen A. S., Chopra I. 2004; A fusidic acid-resistant epidemic strain of Staphylococcus aureus carries the fusB determinant, whereas fusA mutations are prevalent in other resistant isolates. Antimicrob Agents Chemother 48:3594–3597 [View Article][PubMed]
    [Google Scholar]
  22. O’Neill A. J., McLaws F., Kahlmeter G., Henriksen A. S., Chopra I. 2007; Genetic basis of resistance to fusidic acid in staphylococci. Antimicrob Agents Chemother 51:1737–1740 [View Article][PubMed]
    [Google Scholar]
  23. O’Neill A. J., Larsen A. R., Skov R., Henriksen A. S., Chopra I. 2007a; Characterization of the epidemic European fusidic acid-resistant impetigo clone of Staphylococcus aureus. J Clin Microbiol 45:1505–1510 [View Article][PubMed]
    [Google Scholar]
  24. Pfaller M. A., Castanheira M., Sader H. S., Jones R. N. 2010; Evaluation of the activity of fusidic acid tested against contemporary Gram-positive clinical isolates from the USA and Canada. Int J Antimicrob Agents 35:282–287 [View Article][PubMed]
    [Google Scholar]
  25. Saunders N. A., Holmes A. 2007; Multilocus sequence typing (MLST) of Staphylococcus aureus. Methods Mol Biol 391:71–85 [View Article][PubMed]
    [Google Scholar]
  26. Schöfer H., Simonsen L. 2010; Fusidic acid in dermatology: an updated review. Eur J Dermatol 20:6–15[PubMed]
    [Google Scholar]
  27. Tsuji B. T., Okusanya O. O., Bulitta J. B., Forrest A., Bhavnani S. M., Fernandez P. B., Ambrose P. G. 2011; Application of Version 1.3. pharmacokinetic-pharmacodynamic modeling and the justification of a novel fusidic acid dosing regimen: raising Lazarus from the dead. Clin Infect Dis 52:Suppl 7S513–S519 [View Article][PubMed]
    [Google Scholar]
  28. Wang J. L., Tang H. J., Hsieh P. H., Chiu F. Y., Chen Y. H., Chang M. C., Huang C. T., Liu C. P., Lau Y. J. other authors 2012; Fusidic acid for the treatment of bone and joint infections caused by meticillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 40:103–107 [View Article][PubMed]
    [Google Scholar]
  29. Whitby M. 1999; Fusidic acid in the treatment of methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 12:Suppl 2S67–S71 [View Article][PubMed]
    [Google Scholar]
  30. Yan X. M., Gu Y. X., He L. H., Zhang H. F., Zhang J. Z. 2009; [Multilocus sequence typing of methicillin-resistant Staphylococcus aureus]. Zhonghua Yu Fang Yi Xue Za Zhi 43:137–140 (in Chinese) [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.058305-0
Loading
/content/journal/jmm/10.1099/jmm.0.058305-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error