1887

Abstract

An oleate-dependent isolate representing small-colony variants (SCVs) was isolated from the umbilical exudate of a 31-month-old Japanese male patient in Nagano Children’s Hospital, Azumino, Japan. The patient had been suffering from recurrent omphalitis since early infancy. The initial SCV isolate formed small colonies on sheep blood agar plates and tiny colonies on chocolate and modified Drigalski agar, although no visible growth was observed in HK‐semi solid medium after 48 h incubation in ambient air. Moreover, the SCV isolate, the colonial morphology of which was reminiscent of species, could not be identified using the MicroScan WalkAway-40 and API 20 Strep systems, both of which yielded profile numbers that did not correspond to any bacterial species, probably as a result of insufficient growth of the isolate. The SCV isolate was subsequently identified as based on its morphological, cultural and biochemical properties, and this was confirmed by sequencing the 16S rRNA gene of the organism. Investigations revealed that the addition of oleate, an unsaturated fatty acid, enabled the isolate to grow on every medium with normal-sized colony morphology. Although it has long been known that long-chain fatty acids, especially unsaturated oleic acid, have a major inhibitory effect on the growth of a variety of microorganisms, including not only mycobacteria but also streptococci, this is, to the best of our knowledge, the first clinical isolation of an oleate-dependent SCV isolate. In addition, oleic acid might be considered to affect the cell membrane permeability of carbohydrates or antimicrobial agents such as β-lactams.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.062752-0
2013-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/62/12/1883.html?itemId=/content/journal/jmm/10.1099/jmm.0.062752-0&mimeType=html&fmt=ahah

References

  1. Bauernfeind J., Sotier A., Boruff C. 1942; Growth stimulants in the microbiological assay for riboflavin and pantothenic acid. Ind Eng Chem Anal Ed 14:666–671 [View Article]
    [Google Scholar]
  2. Besier S., Zander J., Kahl B. C., Kraiczy P., Brade V., Wichelhaus T. A. 2008; The thymidine-dependent small-colony-variant phenotype is associated with hypermutability and antibiotic resistance in clinical Staphylococcus aureus isolates. Antimicrob Agents Chemother 52:2183–2189 [View Article][PubMed]
    [Google Scholar]
  3. Carson D. D., Daneo-Moore L. 1980; Effects of fatty acids on lysis of Streptococcus faecalis. J Bacteriol 141:1122–1126[PubMed]
    [Google Scholar]
  4. Chatterjee I., Herrmann M., Proctor R. A., Peters G., Kahl B. C. 2007; Enhanced post-stationary-phase survival of a clinical thymidine-dependent small-colony variant of Staphylococcus aureus results from lack of a functional tricarboxylic acid cycle. J Bacteriol 189:2936–2940 [View Article][PubMed]
    [Google Scholar]
  5. Chatterjee I., Kriegeskorte A., Fischer A., Deiwick S., Theimann N., Proctor R. A., Peters G., Herrmann M., Kahl B. C. 2008; In vivo mutations of thymidylate synthase (encoded by thyA) are responsible for thymidine dependency in clinical small-colony variants of Staphylococcus aureus. J Bacteriol 190:834–842 [View Article][PubMed]
    [Google Scholar]
  6. CLSI 2012; Performance Standards for Antimicrobial Susceptibility Testing, 22nd Informational Supplement M100‐S22. Wayne, PA: Clinical and Laboratory Standard Institute;
    [Google Scholar]
  7. Cohen S., Snyder J. C., Mueller J. H. 1941; Factors concerned in the growth of Corynebacterium diphtheriae from minute inocula. J Bacteriol 41:581–591[PubMed]
    [Google Scholar]
  8. Dubos R. J. 1950; The effect of organic acids on mammalian tubercle bacilli. J Exp Med 92:319–332 [View Article][PubMed]
    [Google Scholar]
  9. Galbraith H., Miller T. B. 1973; Effect of long chain fatty acids on bacterial respiration and amino acid uptake. J Appl Bacteriol 36:659–675 [View Article][PubMed]
    [Google Scholar]
  10. Gilligan P. H., Gage P. A., Welch D. F., Muszynski M. J., Wait K. R. 1987; Prevalence of thymidine-dependent Staphylococcus aureus in patients with cystic fibrosis. J Clin Microbiol 25:1258–1261[PubMed]
    [Google Scholar]
  11. Gröbner S., Beck J., Schaller M., Autenrieth I. B., Schulte B. 2012; Characterization of an Enterococcus faecium small-colony variant isolated from blood culture. Int J Med Microbiol 302:40–44 [View Article][PubMed]
    [Google Scholar]
  12. Kaase M., Anders A., Gatermann S. G. 2004; First description of small-colony variants of Enterococcus faecalis isolated from an endocarditis patient. Int J Med Microbiol 294:146
    [Google Scholar]
  13. Kahl B., Herrmann M., Everding A. S., Koch H. G., Becker K., Harms E., Proctor R. A., Peters G. 1998; Persistent infection with small colony variant strains of Staphylococcus aureus in patients with cystic fibrosis. J Infect Dis 177:1023–1029 [View Article][PubMed]
    [Google Scholar]
  14. Kahl B. C., Belling G., Reichelt R., Herrmann M., Proctor R. A., Peters G. 2003; Thymidine-dependent small-colony variants of Staphylococcus aureus exhibit gross morphological and ultrastructural changes consistent with impaired cell separation. J Clin Microbiol 41:410–413 [View Article][PubMed]
    [Google Scholar]
  15. Kahl B. C., Belling G., Becker P., Chatterjee I., Wardecki K., Hilgert K., Cheung A. L., Peters G., Herrmann M. 2005; Thymidine-dependent Staphylococcus aureus small-colony variants are associated with extensive alterations in regulator and virulence gene expression profiles. Infect Immun 73:4119–4126 [View Article][PubMed]
    [Google Scholar]
  16. Kohler C., von Eiff C., Peters G., Proctor R. A., Hecker M., Engelmann S. 2003; Physiological characterization of a heme-deficient mutant of Staphylococcus aureus by a proteomic approach. J Bacteriol 185:6928–6937 [View Article][PubMed]
    [Google Scholar]
  17. Maidak B. L., Cole J. R., Lilburn T. G., Parker C. T. Jr, Saxman P. R., Farris R. J., Garrity G. M., Olsen G. J., Schmidt T. M., Tiedje J. M. 2001; The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174 [View Article][PubMed]
    [Google Scholar]
  18. Neilan B. A., Jacobs D., Del Dot T., Blackall L. L., Hawkins P. R., Cox P. T., Goodman A. E. 1997; rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int J Syst Bacteriol 47:693–697 [View Article][PubMed]
    [Google Scholar]
  19. Nieman C. 1954; Influence of trace amounts of fatty acids on the growth of microorganisms. Bacteriol Rev 18:147–163[PubMed]
    [Google Scholar]
  20. Oana K., Kawakami Y., Hayashi T., Ohnishi M. 2009; Simple broad-spectrum protocol using labiase for bacterial cell lysis to prepare genomic DNA for pulsed-field gel electrophoresis analysis. Microbiol Immunol 53:45–48 [View Article][PubMed]
    [Google Scholar]
  21. Oana K., Yamaguchi M., Nagata M., Washino K., Akahane T., Takamatsu Y. U., Tsutsui C., Matsumoto T., Kawakami Y. 2013; First isolation of carbon dioxide-dependent Proteus mirabilis from an uncomplicated cystitis patient with Sjögren’s syndrome. Jpn J Infect Dis 66:241–244 [View Article][PubMed]
    [Google Scholar]
  22. Pezzo M. 1995; O-nitrophenyl-β-d-galactopyranoside test. 1-19-20, Identification of aerobic Gram-negative bacteria, section 1. Aerobic bacteriology. In Clinical Microbiology Procedures Handbook Edited by Isenberg H. D. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  23. Pollock M. R. 1947; The growth of H. pertussis on media without blood. Br J Exp Pathol 28:295–307[PubMed]
    [Google Scholar]
  24. Proctor R. A., Kahl B. C., von Eiff C., Vaudaux P. E., Lew D. P., Peters G. 1998; Staphylococcal small colony variants have novel mechanisms for antibiotic resistance. Clin Infect Dis 27:Suppl 1S68–S74 [View Article][PubMed]
    [Google Scholar]
  25. Proctor R. A., von Eiff C., Kahl B. C., Becker K., McNamara P., Herrmann M., Peters G. 2006; Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 4:295–305 [View Article][PubMed]
    [Google Scholar]
  26. Schaaff F., Bierbaum G., Baumert N., Bartmann P., Sahl H. G. 2003; Mutations are involved in emergence of aminoglycoside-induced small colony variants of Staphylococcus aureus. Int J Med Microbiol 293:427–435 [View Article][PubMed]
    [Google Scholar]
  27. Stolz J., Hoja U., Meier S., Sauer N., Schweizer E. 1999; Identification of the plasma membrane H+-biotin symporter of Saccharomyces cerevisiae by rescue of a fatty acid-auxotrophic mutant. J Biol Chem 274:18741–18746 [View Article][PubMed]
    [Google Scholar]
  28. Strong F. M., Carpenter L. E. 1942; Preparation of samples for microbiological determination of riboflavin. Ind Eng Chem Anal Ed 14:909–913 [View Article]
    [Google Scholar]
  29. von Eiff C., Heilmann C., Proctor R. A., Woltz C., Peters G., Götz F. 1997; A site-directed Staphylococcus aureus hemB mutant is a small-colony variant which persists intracellularly. J Bacteriol 179:4706–4712[PubMed]
    [Google Scholar]
  30. Walker J. E. 1926; The germicidal properties of soap. J Infect Dis 38:127–130 [View Article]
    [Google Scholar]
  31. Wang H., Cronan J. E. 2004; Functional replacement of the FabA and FabB proteins of Escherichia coli fatty acid synthesis by Enterococcus faecalis FabZ and FabF homologues. J Biol Chem 279:34489–34495 [View Article][PubMed]
    [Google Scholar]
  32. Wellinghausen N., Chatterjee I., Berger A., Niederfuehr A., Proctor R. A., Kahl B. C. 2009; Characterization of clinical Enterococcus faecalis small-colony variants. J Clin Microbiol 47:2802–2811 [View Article][PubMed]
    [Google Scholar]
  33. Willett N. P., Morse G. E. 1966; Long-chain fatty acid inhibition of growth of Streptococcus agalactiae in a chemically defined medium. J Bacteriol 91:2245–2250[PubMed]
    [Google Scholar]
  34. Williams W. L., Broquist H. P., Snell E. E. 1947; Oleic acid and related compounds as growth factors for lactic acid bacteria. J Biol Chem 170:619–630
    [Google Scholar]
  35. Wilson G., Rose S. P., Fox C. F. 1970; The effect of membrane lipid unsaturation on glycoside transport. Biochem Biophys Res Commun 38:617–623 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.062752-0
Loading
/content/journal/jmm/10.1099/jmm.0.062752-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error