1887

Abstract

The limitations of classical diagnostic methods for invasive infections have led to the development of molecular techniques such as real-time PCR to improve diagnosis. However, the detection of low titres of DNA in blood from patients with candidaemia requires the use of extraction methods that efficiently lyse yeast cells and recover small amounts of DNA suitable for amplification. In this study, a -specific real-time PCR assay was used to detect DNA in inoculated whole blood specimens extracted using seven different extraction protocols. The yield and quality of total nucleic acids were estimated using UV absorbance, and specific recovery of genomic DNA was estimated quantitatively in comparison with a reference (Qiagen kit/lyticase) method currently in use in our laboratory. The extraction protocols were also compared with respect to sensitivity, cost and time required for completion. The TaqMan PCR assay used to amplify the DNA extracts achieved high levels of specificity, sensitivity and reproducibility. Of the seven extraction protocols evaluated, only the MasterPure yeast DNA extraction reagent kit gave significantly higher total nucleic acid yields than the reference method, although nucleic acid purity was highest using either the reference or YeaStar genomic DNA kit methods. More importantly, the YeaStar method enabled DNA to be detected with highest sensitivity over the entire range of copy numbers evaluated, and appears to be an optimal method for extracting DNA from whole blood.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.47617-0
2008-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/57/3/296.html?itemId=/content/journal/jmm/10.1099/jmm.0.47617-0&mimeType=html&fmt=ahah

References

  1. Ahmad S., Khan Z., Mustafa A. S., Khan Z. U. 2002; Seminested PCR for diagnosis of candidemia: comparison with culture, antigen detection, and biochemical methods for species identification. J Clin Microbiol 40:2483–2489 [CrossRef]
    [Google Scholar]
  2. Arishima T., Takezawa J. 2006; Use of PCR based diagnosis for common invasive fungal infections in the intensive care unit. Nippon Ishinkin Gakkai Zasshi 47:283–288 [CrossRef]
    [Google Scholar]
  3. Ascioglu S., Rex J. H., de Pauw B., Bennett J. E., Bille J., Crokaert F., Denning D. W., Donnelly J. P., Edwards J. E. other authors 2002; Defining opportunistic invasive fungal infections in immunocompromised patients with cancer and hematopoietic stem cell transplants: an international consensus. Clin Infect Dis 34:7–14 [CrossRef]
    [Google Scholar]
  4. Bougnoux M., Dupont C., Mateo J., Saulnier P., Faivre V., Payen D., Nicolas-Chanoine M. 1999; Serum is more suitable than whole blood for diagnosis of systemic candidiasis by nested PCR. J Clin Microbiol 37:925–930
    [Google Scholar]
  5. Bretagne S., Costa J. M. 2005; Towards a molecular diagnosis of invasive aspergillosis and disseminated candidosis. FEMS Immunol Med Microbiol 45:361–368 [CrossRef]
    [Google Scholar]
  6. Buchheidt D., Hummel M., Schleiermacher D., Spiess B., Schwerdtfeger R., Cornely O. A., Wilhelm S., Reuter S., Kern W. other authors 2004; Prospective clinical evaluation of a LightCycler-mediated polymerase chain reaction assay, a nested-PCR assay and a galactomannan enzyme-linked immunosorbent assay for detection of invasive aspergillosis in neutropenic cancer patients and haematological stem cell transplant recipients. Br J Haematol 125:196–202 [CrossRef]
    [Google Scholar]
  7. Challier S., Boyer S., Abachin E., Berche P. 2004; Development of a serum-based TaqMan real-time PCR assay for diagnosis of invasive aspergillosis. J Clin Microbiol 42:844–846 [CrossRef]
    [Google Scholar]
  8. Einsele H., Hebart H., Roller G., Löffler J., Rothenhofer I., Muller C. A., Bowden R. A., van Burik J., Engelhard D. other authors 1997; Detection and identification of fungal pathogens in blood by using molecular probes. J Clin Microbiol 35:1353–1360
    [Google Scholar]
  9. Ellis M. 2002; Invasive fungal infections: evolving challenges for diagnosis and therapeutics. Mol Immunol 38:947–957 [CrossRef]
    [Google Scholar]
  10. Flahaut M., Sanglard D., Monod M., Bille J., Rossier M. 1998; Rapid detection of Candida albicans in clinical samples by DNA amplification of common regions from C. albicans -secreted aspartic proteinase genes. J Clin Microbiol 36:395–401
    [Google Scholar]
  11. Fredricks D. N., Relman D. A. 1998; Improved amplification of microbial DNA from blood cultures by removal of the PCR inhibitor sodium polyanetholesulfonate. J Clin Microbiol 36:2810–2816
    [Google Scholar]
  12. Fredricks D. N., Smith C., Meier A. 2005; Comparison of six DNA extraction methods for recovery of fungal DNA as assessed by quantitative PCR. J Clin Microbiol 43:5122–5128 [CrossRef]
    [Google Scholar]
  13. Gallagher M. L., Burke W. F., Orzech K. 1987; Carrier RNA enhancement of recovery of DNA from dilute solutions. Biochem Biophys Res Commun 144:271–276 [CrossRef]
    [Google Scholar]
  14. Innings A., Ullberg M., Johansson A., Rubin C. J., Noreus N., Isaksson M., Herrmann B. 2007; Multiplex real-time PCR targeting the RNase P RNA gene for detection and identification of Candida species in blood. J Clin Microbiol 45:874–880 [CrossRef]
    [Google Scholar]
  15. Jaeger E. E., Carroll N. M., Choudhury S., Dunlop A. A., Towler H. M., Matheson M. M., Adamson P., Okhravi N., Lightman S. 2000; Rapid detection and identification of Candida , Aspergillus , and Fusarium species in ocular samples using nested PCR. J Clin Microbiol 38:2902–2908
    [Google Scholar]
  16. Karakousis A., Tan L., Ellis D., Alexiou H., Wormald P. J. 2006; An assessment of the efficiency of fungal DNA extraction methods for maximizing the detection of medically important fungi using PCR. J Microbiol Methods 65:38–48 [CrossRef]
    [Google Scholar]
  17. Kasai M., Francesconi A., Petraitiene R., Petraitis V., Kelaher A. M., Kim H. S., Meletiadis J., Sein T., Bacher J., Walsh T. J. 2006; Use of quantitative real-time PCR to study the kinetics of extracellular DNA released from Candida albicans , with implications for diagnosis of invasive candidiasis. J Clin Microbiol 44:143–150 [CrossRef]
    [Google Scholar]
  18. Kishore R., Reef Hardy W., Anderson V. J., Sanchez N. A., Buoncristiani M. R. 2006; Optimization of DNA extraction from low-yield and degraded samples using the BioRobot EZ1 and BioRobot M48. J Forensic Sci 51:1055–1061 [CrossRef]
    [Google Scholar]
  19. Klingspor L., Jalal S. 2006; Molecular detection and identification of Candida and Aspergillus spp. from clinical samples using real-time PCR. Clin Microbiol Infect 12:745–753 [CrossRef]
    [Google Scholar]
  20. Löffler J., Hebart H., Schumacher U., Reitze H., Einsele H. 1997; Comparison of different methods for extraction of DNA of fungal pathogens from cultures and blood. J Clin Microbiol 35:3311–3312
    [Google Scholar]
  21. Löffler J., Henke N., Hebart H., Schmidt D., Hagmeyer L., Schumacher U., Einsele H. 2000; Quantification of fungal DNA by using fluorescence resonance energy transfer and the light cycler system. J Clin Microbiol 38:586–590
    [Google Scholar]
  22. Lugert R., Schettler C., Gross U. 2006; Comparison of different protocols for DNA preparation and PCR for the detection of fungal pathogens in vitro . Mycoses 49:298–304 [CrossRef]
    [Google Scholar]
  23. Maaroufi Y., Heymans C., De Bruyne J. M., Duchateau V., Rodriguez-Villalobos H., Aoun M., Crokaert F. 2003; Rapid detection of Candida albicans in clinical blood samples by using a TaqMan-based PCR assay. J Clin Microbiol 41:3293–3298 [CrossRef]
    [Google Scholar]
  24. Maaroufi Y., Ahariz N., Husson M., Crokaert F. 2004; Comparison of different methods of isolation of DNA of commonly encountered Candida species and its quantitation by using a real-time PCR-based assay. J Clin Microbiol 42:3159–3163 [CrossRef]
    [Google Scholar]
  25. Metwally L., Hogg G., Coyle P. V., Hay R. J., Hedderwick S., McCloskey B., O'Neill H. J., Ong G. M., Thompson G. other authors 2007; Rapid differentiation between fluconazole-sensitive and -resistant species of Candida directly from positive blood-culture bottles by real-time PCR. J Med Microbiol 56:964–970 [CrossRef]
    [Google Scholar]
  26. Millar B. C., Jiru X., Moore J. E., Earle J. A. 2000; A simple and sensitive method to extract bacterial, yeast and fungal DNA from blood culture material. J Microbiol Methods 42:139–147 [CrossRef]
    [Google Scholar]
  27. Moreira-Oliveira M. S., Mikami Y., Miyaji M., Imai T., Schreiber A. Z., Moretti M. L. 2005; Diagnosis of candidemia by polymerase chain reaction and blood culture: prospective study in a high-risk population and identification of variables associated with development of candidemia. Eur J Clin Microbiol Infect Dis 24:721–726 [CrossRef]
    [Google Scholar]
  28. Müller F. M., Werner K. E., Kasai M., Francesconi A., Chanock S. J., Walsh T. J. 1998; Rapid extraction of genomic DNA from medically important yeasts and filamentous fungi by high-speed cell disruption. J Clin Microbiol 36:1625–1629
    [Google Scholar]
  29. Pryce T. M., Kay I. D., Palladino S., Heath C. H. 2003; Real-time automated polymerase chain reaction (PCR) to detect Candida albicans and Aspergillus fumigatus DNA in whole blood from high-risk patients. Diagn Microbiol Infect Dis 47:487–496 [CrossRef]
    [Google Scholar]
  30. Rustchenko E. P., Curran T. M., Sherman F. 1993; Variations in the number of ribosomal DNA units in morphological mutants and normal strains of Candida albicans and in normal strains of Saccharomyces cerevisiae . J Bacteriol 175:7189–7199
    [Google Scholar]
  31. Schabereiter-Gurtner C., Selitsch B., Rotter M. L., Hirschl A. M., Willinger B. 2007; Development of novel real-time PCR assays for detection and differentiation of eleven medically important Aspergillus and Candida species in clinical specimens. J Clin Microbiol 45:906–914 [CrossRef]
    [Google Scholar]
  32. Scherer S., Magee P. T. 1990; Genetics of Candida albicans . Microbiol Mol Biol Rev 54:226–241
    [Google Scholar]
  33. Stahlberg A., Hakansson J., Xian X., Semb H., Kubista M. 2004; Properties of the reverse transcription reaction in mRNA quantification. Clin Chem 50:509–515 [CrossRef]
    [Google Scholar]
  34. Wahyuningsih R., Freisleben H. J., Sonntag H. G., Schnitzler P. 2000; Simple and rapid detection of Candida albicans DNA in serum by PCR for diagnosis of invasive candidiasis. J Clin Microbiol 38:3016–3021
    [Google Scholar]
  35. White P. L., Shetty A., Barnes R. A. 2003; Detection of seven Candida species using the Light-Cycler system. J Med Microbiol 52:229–238 [CrossRef]
    [Google Scholar]
  36. White P. L., Barton R., Guiver M., Linton C. J., Wilson S., Smith M., Gomez B. L., Carr M. J., Kimmitt P. T. other authors 2006; A consensus on fungal polymerase chain reaction diagnosis?: a United Kingdom–Ireland evaluation of polymerase chain reaction methods for detection of systemic fungal infections. J Mol Diagn 8:376–384 [CrossRef]
    [Google Scholar]
  37. Wickes B., Staudinger J., Magee B. B., Kwon-Chung K. J., Magee P. T., Scherer S. 1991; Physical and genetic mapping of Candida albicans : several genes previously assigned to chromosome 1 map to chromosome R, the rDNA-containing linkage group. Infect Immun 59:2480–2484
    [Google Scholar]
  38. Widjojoatmodjo M. N., Borst A., Schukkink R. A., Box A. T., Tacken N. M., Van Gemen B., Verhoef J., Top B., Fluit A. C. 1999; Nucleic acid sequence-based amplification (NASBA) detection of medically important Candida species. J Microbiol Methods 38:81–90 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.47617-0
Loading
/content/journal/jmm/10.1099/jmm.0.47617-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error