1887

Abstract

A Gram-stain-negative, aerobic, rod-shaped and non-motile bacterium, designated HSF11, was isolated from deep seawater of the South China Sea. Growth was observed at 20–40 °C (optimum 35 °C), pH 5.0–8.5 (optimum pH 7.0–7.5) and with 0–7 % NaCl (optimum 2 %). Bacteriochlorophyll and poly--hydroxybutyrate (PHB) granules were not detected. Nitrate could be reduced to nitrite. The major fatty acids (≥5 %) of strain HSF11 were Ccyclo ω8, C and C. The isoprenoid quinone was Q-10. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, two unknown phospholipids (PL1, PL2), one unknown aminolipid (AL1) and three unknown lipids (L1, L3, L4). The genomic DNA G+C content was 70.7 mol%. 16S rRNA gene sequence analysis indicated that strain HSF11 was most closely related to DSM 19345 (95.7 % 16S rRNA gene sequence similarity) and KCTC 22669 (95.2 %). On the basis of the genotypic, phenotypic, phylogenetic and chemotaxonomic characteristics, strain HSF11 represents a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is HSF11 (=KCTC 52 363=MCCC 1K03192).

Keyword(s): deep seawater and Proteobacteria
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001647
2017-04-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/67/4/812.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001647&mimeType=html&fmt=ahah

References

  1. Euzéby JP. List of bacterial names with standing in nomenclature: a folder available on the internet. Int J Syst Bacteriol 1997; 47:590–592 [View Article][PubMed]
    [Google Scholar]
  2. Urdiain M, López-López A, Gonzalo C, Busse HJ, Langer S et al. Reclassification of Rhodobium marinum and Rhodobium pfennigii as Afifella marina gen. nov. comb. nov. and Afifella pfennigii comb. nov., a new genus of photoheterotrophic Alphaproteobacteria and emended descriptions of Rhodobium, Rhodobium orientis and Rhodobium gokarnense. Syst Appl Microbiol 2008; 31:339–351 [View Article][PubMed]
    [Google Scholar]
  3. Brettar I, Christen R, Bötel J, Lünsdorf H, Höfle MG. Anderseniella baltica gen. nov., sp. nov., a novel marine bacterium of the Alphaproteobacteria isolated from sediment in the central Baltic Sea. Int J Syst Evol Microbiol 2007; 57:2399–2405 [View Article][PubMed]
    [Google Scholar]
  4. Kumar PA, Srinivas TN, Manasa P, Madhu S, Shivaji S. Lutibaculum baratangense gen. nov., sp. nov., a proteobacterium isolated from a mud volcano. Int J Syst Evol Microbiol 2012; 62:2025–2031 [View Article][PubMed]
    [Google Scholar]
  5. Lai Q, Wang L, Liu Y, Yuan J, Sun F et al. Parvibaculum indicum sp. nov., isolated from deep-sea water. Int J Syst Evol Microbiol 2011; 61:271–274 [View Article][PubMed]
    [Google Scholar]
  6. Srinivas TN, Kumar PA, Sasikala Ch, Ramana Chv, Imhoff JF. Rhodobium gokarnense sp. nov., a novel phototrophic alphaproteobacterium from a saltern. Int J Syst Evol Microbiol 2007; 57:932–935 [View Article][PubMed]
    [Google Scholar]
  7. Fukuda W, Yamada K, Miyoshi Y, Okuno H, Atomi H et al. Rhodoligotrophos appendicifer gen. nov., sp. nov., an appendaged bacterium isolated from a freshwater Antarctic lake. Int J Syst Evol Microbiol 2012; 62:1945–1950 [View Article][PubMed]
    [Google Scholar]
  8. Glaeser J, Overmann J. Selective enrichment and characterization of Roseospirillum parvum, gen. nov. and sp. nov., a new purple nonsulfur bacterium with unusual light absorption properties. Arch Microbiol 1999; 171:405–416 [View Article]
    [Google Scholar]
  9. Albuquerque L, Rainey FA, Pena A, Tiago I, Veríssimo A et al. Tepidamorphus gemmatus gen. nov., sp. nov., a slightly thermophilic member of the Alphaproteobacteria. Syst Appl Microbiol 2010; 33:60–66 [View Article][PubMed]
    [Google Scholar]
  10. Williams ST, Davies FL. Use of antibiotics for selective isolation and enumeration of Actinomycetes in soil. J Gen Microbiol 1965; 38:251–261 [View Article][PubMed]
    [Google Scholar]
  11. Pan J, Sun C, Zhang XQ, Huo YY, Zhu XF et al. Paracoccus sediminis sp. nov., isolated from Pacific Ocean marine sediment. Int J Syst Evol Microbiol 2014; 64:2512–2516 [View Article][PubMed]
    [Google Scholar]
  12. Claus D. A standardized Gram staining procedure. World J Microbiol Biotechnol 1992; 8:451–452 [View Article][PubMed]
    [Google Scholar]
  13. Suzuki M, Nakagawa Y, Harayama S, Yamamoto S. Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 2001; 51:1639–1652 [View Article][PubMed]
    [Google Scholar]
  14. Mesquita DP, Amaral AL, Leal C, Oehmen A, Reis MA et al. Polyhydroxyalkanoate granules quantification in mixed microbial cultures using image analysis: Sudan Black B versus Nile Blue A staining. Anal Chim Acta 2015; 865:8–15 [View Article][PubMed]
    [Google Scholar]
  15. Zhang WY, Huo YY, Zhang XQ, Zhu XF, Wu M. Halolamina salifodinae sp. nov. and Halolamina salina sp. nov., two extremely halophilic archaea isolated from a salt mine. Int J Syst Evol Microbiol 2013; 63:4380–4385 [View Article][PubMed]
    [Google Scholar]
  16. Sun C, Fu GY, Zhang CY, Hu J, Xu L et al. Isolation and complete genome sequence of Algibacter alginolytica sp. nov., a novel seaweed-degrading Bacteroidetes bacterium with diverse putative polysaccharide utilization loci. Appl Environ Microbiol 2016; 82:2975–2987 [View Article][PubMed]
    [Google Scholar]
  17. Su Y, Wang R, Sun C, Han S, Hu J et al. Thalassobaculum fulvum sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2016; 66:2186–2191 [View Article][PubMed]
    [Google Scholar]
  18. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963; 85:1183[PubMed]
    [Google Scholar]
  19. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  20. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425[PubMed]
    [Google Scholar]
  22. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  23. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  24. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989; 39:159–167 [View Article]
    [Google Scholar]
  25. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  26. Fang MX, Zhang WW, Zhang YZ, Tan HQ, Zhang XQ et al. Brassicibacter mesophilus gen. nov., sp. nov., a strictly anaerobic bacterium isolated from food industry wastewater. Int J Syst Evol Microbiol 2012; 62:3018–3023 [View Article][PubMed]
    [Google Scholar]
  27. Xu XW, Huo YY, Wang CS, Oren A, Cui HL et al. Pelagibacterium halotolerans gen. nov., sp. nov. and Pelagibacterium luteolum sp. nov., novel members of the family Hyphomicrobiaceae. Int J Syst Evol Microbiol 2011; 61:1817–1822 [View Article][PubMed]
    [Google Scholar]
  28. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001647
Loading
/content/journal/ijsem/10.1099/ijsem.0.001647
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error