1887

Abstract

Three Gram-stain-positive bacterial strains (designated 231-9, 142-6 and 463-4) were isolated from traditional Chinese pickle, and were characterized using a polyphasic taxonomic approach. Results of 16S rRNA gene sequence analysis indicated that strains 231-9, 142-6 and 463-4 were phylogenetically related to the type strains of , , , and , having 98.6–99.9 % 16S rRNA gene sequence similarities. Strains 231-9, 142-6 and 463-4 were most closely related to the type strain of , having 99.9 % 16S rRNA gene, 95.6 % , 99.4 % and 98.2 % concatenated and sequence similarities. Relatively low (95.6 %) sequence similarity indicated that strain 231-9 should be further identified. Strain 231-9 shared 99.7–99.9 % average nucleotide identity (ANI) and 98.8–98.9 % digital DNA–DNA hybridization (dDDH) values with strains 142-6 and 463-4, indicating that they belonged to the same species. The ANI and dDDH values between strain 231-9 and LMG 26013 were 92.4–92.9 and 49.6 %, respectively, less than the threshold for species demarcation (95–96% ANI and 70 % dDDH values, respectively), indicating that strains 231-9, 142-6 and 463-4 represented a novel species within the genus . Acid production from -ribose, -adonitol, -galactose and lactose, activity of -galactosidase and -glucosidase, Voges–Proskauer reaction, hydrolysis of hippurate, resistance to 5 µg ml erythromycin, 100 µg ml tetracycline hydrochloride, 50 µg ml bacitracin, 300 µg ml each of gentamicin sulphate, streptomycin sulphate and neomycin sulphate, tolerance to 6 % NaCl could distinguish strains 231-9, 142-6 and 463-4 from 3.1.1. Based upon the data of polyphasic characterization obtained in the present study, a novel species, sp. nov., is proposed and the type strain is 231-9 (=JCM 36258=CCTCC AB 2023133).

Funding
This study was supported by the:
  • “Characteristic Probiotics and New Fermented Food” Team in Northeast Agricultural University (Award 50940912)
    • Principle Award Recipient: ChunTao Gu
  • National Natural Science Foundation of China (Award no. 31471594)
    • Principle Award Recipient: ChunTao Gu
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.006278
2024-03-01
2024-04-27
Loading full text...

Full text loading...

References

  1. Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB et al. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 2020; 70:2782–2858 [View Article]
    [Google Scholar]
  2. Eilers T, Dillen J, Van de Vliet N, Wittouck S, Lebeer S. Lactiplantibacillus carotarum AMBF275T sp. nov. isolated from carrot juice fermentation. Int J Syst Evol Microbiol 2023; 73:005976 [View Article] [PubMed]
    [Google Scholar]
  3. Miyamoto M, Seto Y, Hao DH, Teshima T, Sun YB et al. Lactobacillus harbinensis sp. nov., consisted of strains isolated from traditional fermented vegetables “Suan cai” in Harbin, Northeastern China and Lactobacillus perolens DSM 12745. Syst Appl Microbiol 2005; 28:688–694 [View Article] [PubMed]
    [Google Scholar]
  4. Li TT, Liu DD, Fu ML, Gu CT. Proposal of Lactobacillus kosoi Chiou et al. 2018 as a later heterotypic synonym of Lactobacillus micheneri Mcfrederick et al. 2018, elevation of Lactobacillus plantarum subsp. Argentoratensis to the species level as Lactobacillus argentoratensis sp. nov., and Lactobacillus zhaodongensis sp. nov., isolated from traditional Chinese pickle and the intestinal tract of a honey bee (Apis mellifera). Int J Syst Evol Microbiol 2020; 70:3123–3133
    [Google Scholar]
  5. Gu CT, Wang F, Li CY, Liu F, Huo GC. Lactobacillus xiangfangensis sp. nov., isolated from Chinese pickle. Int J Syst Evol Microbiol 2012; 62:860–863 [View Article] [PubMed]
    [Google Scholar]
  6. Diaz M, Sayavedra L, Atter A, Mayer MJ, Saha S et al. Lactobacillus garii sp. nov., isolated from a fermented cassava product. Int J Syst Evol Microbiol 2020; 70:3012–3017 [View Article] [PubMed]
    [Google Scholar]
  7. Liu DD, Gu CT. Lactobacillus pingfangensis sp. nov., Lactobacillus daoliensis sp. nov., Lactobacillus nangangensis sp. nov., Lactobacillus daowaiensis sp. nov., Lactobacillus dongliensis sp. nov., Lactobacillus songbeiensis sp. nov. and Lactobacillus kaifaensis sp. nov., isolated from traditional Chinese pickle. Int J Syst Evol Microbiol 2019; 69:3237–3247 [View Article]
    [Google Scholar]
  8. Gu CT, Li CY, Yang LJ, Huo GC. Lactobacillus mudanjiangensis sp. nov., Lactobacillus songhuajiangensis sp. nov. and Lactobacillus nenjiangensis sp. nov., isolated from Chinese traditional pickle and sourdough. Int J Syst Evol Microbiol 2013; 63:4698–4706 [View Article] [PubMed]
    [Google Scholar]
  9. Mao Y, Chen M, Horvath P. Lactobacillus herbarum sp. nov., a species related to Lactobacillus plantarum. Int J Syst Evol Microbiol 2015; 65:4682–4688 [View Article] [PubMed]
    [Google Scholar]
  10. Miyashita M, Yukphan P, Chaipitakchonlatarn W, Malimas T, Sugimoto M et al. Lactobacillus plajomi sp. nov. and Lactobacillus modestisalitolerans sp. nov., isolated from traditional fermented foods. Int J Syst Evol Microbiol 2015; 65:2485–2490 [View Article] [PubMed]
    [Google Scholar]
  11. De Bruyne K, Camu N, De Vuyst L, Vandamme P. Lactobacillus fabifermentans sp. nov. and Lactobacillus cacaonum sp. nov., isolated from Ghanaian cocoa fermentations. Int J Syst Evol Microbiol 2009; 59:7–12 [View Article] [PubMed]
    [Google Scholar]
  12. Bringel F, Castioni A, Olukoya DK, Felis GE, Torriani S et al. Lactobacillus plantarum subsp. argentoratensis subsp. nov., isolated from vegetable matrices. Int J Syst Evol Microbiol 2005; 55:1629–1634 [View Article] [PubMed]
    [Google Scholar]
  13. Curk M-C, Hubert J-C, Bringel F. Lactobacillus paraplantarum sp. now., a new species related to Lactobacillus plantarum. Int J Syst Bacteriol 1996; 46:595–598 [View Article] [PubMed]
    [Google Scholar]
  14. Zanoni P, Farrow JAE, Phillips BA, Collins MD. Lactobacillus pentosus (Fred, Peterson, and Anderson) sp. nov., nom. rev. Int J Syst Bacteriol 1987; 37:339–341 [View Article]
    [Google Scholar]
  15. An D, Cai S, Dong X. Actinomyces ruminicola sp. nov., isolated from cattle rumen. Int J Syst Evol Microbiol 2006; 56:2043–2048 [View Article] [PubMed]
    [Google Scholar]
  16. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P et al. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 2005; 151:2141–2150 [View Article] [PubMed]
    [Google Scholar]
  17. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article] [PubMed]
    [Google Scholar]
  18. Kishino H, Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 1989; 29:170–179 [View Article] [PubMed]
    [Google Scholar]
  19. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article] [PubMed]
    [Google Scholar]
  20. Naser SM, Dawyndt P, Hoste B, Gevers D, Vandemeulebroecke K et al. Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol 2007; 57:2777–2789 [View Article] [PubMed]
    [Google Scholar]
  21. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article] [PubMed]
    [Google Scholar]
  22. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article] [PubMed]
    [Google Scholar]
  23. Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R et al. The PATRIC bioinformatics resource center: expanding data and analysis capabilities. Nucleic Acids Res 2020; 48:D606–D612 [View Article] [PubMed]
    [Google Scholar]
  24. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article] [PubMed]
    [Google Scholar]
  25. Yoon S-H, Ha S-M, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article] [PubMed]
    [Google Scholar]
  26. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016; 32:929–931 [View Article] [PubMed]
    [Google Scholar]
  27. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article] [PubMed]
    [Google Scholar]
  28. Auch AF, von Jan M, Klenk H-P, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article] [PubMed]
    [Google Scholar]
  29. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article] [PubMed]
    [Google Scholar]
  30. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article] [PubMed]
    [Google Scholar]
  31. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  32. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 2015; 25:1043–1055 [View Article] [PubMed]
    [Google Scholar]
  33. Li TT, Gu CT. Lactobacillus huangpiensis sp. nov. and Lactobacillus laiwuensis sp. nov., isolated from the gut of honeybee (Apis mellifera). Int J Syst Evol Microbiol 2022; 72:005237
    [Google Scholar]
  34. Gao JL, Sun JG, Li Y, Wang ET, Chen WX. Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan province, China. Int J Syst Bacteriol 1994; 44:151–158 [View Article]
    [Google Scholar]
  35. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note vol 101 Newark, DE, USA: Microbial ID Inc; 1990
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.006278
Loading
/content/journal/ijsem/10.1099/ijsem.0.006278
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error