1887

Abstract

, the aetiological agent of melioidosis, is endemic in south-east Asia and northern Australia, where it is an important cause of human disease. There is no vaccine available and antibiotic therapy is associated with high relapse rates. A panel of seven monoclonal antibodies (MAbs) that recognise capsular polysaccharide, lipopolysaccharide or proteins was produced and their ability to protect mice passively against experimental melioidosis was evaluated. The MAbs were capable of protecting mice against intra-peritoneal challenge with 10 cfu/250 MLD of a virulent strain of (NCTC 4845), when pooled, and four of the MAbs were individually protective. However, at a higher challenge level of 10 cfu none of the MAbs afforded protection and only the anti-exopolysaccharide MAbs produced a significantly delayed time to death.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/0022-1317-51-12-1055
2002-12-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jmm/51/12/1055.html?itemId=/content/journal/jmm/10.1099/0022-1317-51-12-1055&mimeType=html&fmt=ahah

References

  1. Pitt TL. Pseudomonas mallei and P. pseudomallei . In Parker MT, Duerden BI. eds Topley and Wilson's Principles of bacteriology, virology and immunity vol II, 8th edn. Systematic bacteriology. London, Edward Arnold: 1990265–273
    [Google Scholar]
  2. Dance DAB. Melioidosis: the tip of the iceberg?. Clin Microbiol Rev 1991; 4:52–60
    [Google Scholar]
  3. Currie B. Melioidosis in Papua New Guinea: is it less common than in tropical Australia?. Trans R Soc Trop Med Hyg 1993; 87:417 [CrossRef]
    [Google Scholar]
  4. Jenney AWJ, Lum G, Fisher DA, Currie BJ. Antibiotic susceptibility of Burkholderia pseudomallei from tropical northern Australia and implications for therapy of melioidosis. Int J Antimicrob Agents 2001; 17:109–113 [CrossRef]
    [Google Scholar]
  5. Vedros NA, Chow D, Liong E. Experimental vaccine against Pseudomonas pseudomallei infections in captive cetaceans. Dis Aqu Org 1988; 5:157–161 [CrossRef]
    [Google Scholar]
  6. Dannenberg AM, Scott EM. Melioidosis: pathogenesis and immunity in mice and hamsters.II. Studies with avirulent strains of Malleomyces pseudomallei . Am J Pathol 1958; 34:1099–1121
    [Google Scholar]
  7. Levine HB, Maurer RL. Immunisation with an induced avirulent auxotrophic mutant of Pseudomonas pseudomallei . J Immunol 1958; 81:433–438
    [Google Scholar]
  8. Brett PJ, Mah DCW, Woods DE. Isolation and characterisation of Pseudomonas pseudomallei flagellin proteins. Infect Immun 1994; 62:1914–1919
    [Google Scholar]
  9. Bryan LE, Wong S, Woods DE, Dance DAB, Chaowagul W. Passive protection of diabetic rats with antisera specific for the polysaccharide portion of the lipopolysaccharide isolated from Pseudomonas pseudomallei . Can J Infect Dis 1994; 5:170–178
    [Google Scholar]
  10. Perry MB, MacLean LL, Schollaardt T, Bryan LE, Ho M. Structural characterization of the lipopolysaccharide O antigens of Burkholderia pseudomallei . Infect Immun 1995; 63:3348–3352
    [Google Scholar]
  11. Charuchaimontri C, Supputtamongkol Y, Nilakul C. et al. Anti-lipopolysaccharide II: an antibody protective against fatal melioidosis. Clin Infect Dis 1999; 29:813–818 [CrossRef]
    [Google Scholar]
  12. Kanai K, Kondo E. Recent advances in biomedical sciences of Burkholderia pseudomallei . Jpn J Med Sci Biol 1994; 47:1–45 [CrossRef]
    [Google Scholar]
  13. Popov S, Kurilov V, Iakovlev A. Pseudomonas pseudomallei and Pseudomonas mallei are capsule forming bacteria. Zh Mikrobiol Epidemiol Immunobiol 1995; 5:32–36
    [Google Scholar]
  14. Puthucheary S, Vadivelu J, Ce-Cile C, Kum-Thong W, Ismail G. Electron microscopic demonstration of extracellular structure of Burkholderia (Pseudomonas) pseudomallei . Am J Trop Med Hyg 1996; 54:313–314
    [Google Scholar]
  15. Ahmed K, Encisco H, Masaki H. et al. Attachment of Burkholderia pseudomallei to pharyngeal epithelial cells: a highly pathogenic bacteria with low attachment ability. Am J Trop Med Hyg 1999; 60:90–93
    [Google Scholar]
  16. Pruksachartvuthi S, Aswapokee N, Thankerngpol K. Survival of Pseudomonas pseudomallei in human phagocytes. J Med Microbiol 1990; 31:109–114 [CrossRef]
    [Google Scholar]
  17. Brett P, Woods D. Pathogenesis of and immunity to melioidosis. Acta Tropica 2000; 74:201–210 [CrossRef]
    [Google Scholar]
  18. Reckseidler SL, DeShazer D, Sokol PA, Woods DE. Detection of bacterial virulence genes by subtractive hybridisation: identification of capsular polysaccharide of Burkholderia pseudomallei as a major virulence determinant. Infect Immun 2001; 69:34–44 [CrossRef]
    [Google Scholar]
  19. Atkins T, Prior R, Mack K. et al. Characterisation of an acapsular mutant of Burkholderia pseudomallei identified by signature tagged mutagenesis. J Med Microbiol 2002; 51:539–547
    [Google Scholar]
  20. Chart H. Lipopolysaccharide: isolation and characterisation. In Raton B, Arbor A. eds Methods in practical laboratory bacteriology London: CRC Press; 199411–20
    [Google Scholar]
  21. Harlow E, Lane D. Antibodies: a laboratory manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1988
    [Google Scholar]
  22. Laemmli EK. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 1970; 227:680–685 [CrossRef]
    [Google Scholar]
  23. Chart H. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation and resolution of bacterial components. In Raton B, Arbor A. eds Methods in practical laboratory bacteriology London: CRC Press; 199421–33
    [Google Scholar]
  24. Steinmetz I, Rohde M, Brenneke B. Purification and characterisation of an exopolysaccharide of Burkholderia (Pseudomonas) pseudomallei . Infect Immun 1995; 63:3959–3965
    [Google Scholar]
  25. Russell P, Eley S, Ellis J. et al. Comparison of efficacy of ciprofloxacin and doxycycline against experimental melioidosis and glanders. J Antimicrob Chemother 2000; 45:813–818 [CrossRef]
    [Google Scholar]
  26. Poxton IR, Arbuthnott JP. Determinants of bacterial virulence. In Parker MT, Collier LH. eds Topley and Wilson's Principles of bacteriology, virology and immunity vol I, 8th edn. London, Edward Arnold: 1990332–351
    [Google Scholar]
  27. Ho M, Schollaardt T, Smith MD. et al. Specificity and functional activity of anti- Burkholderia pseudomallei polysaccharide antibodies. Infect Immun 1997; 65:3648–3653
    [Google Scholar]
  28. Pier GB, Thomas DM. Characterisation of the human immune response to a polysaccharide vaccine from Pseudomonas aeruginosa . J Infect Dis 1983; 148:206–213 [CrossRef]
    [Google Scholar]
  29. Jones AL, Beveridge TJ, Woods DE. Intracellular survival of Burkholderia pseudomallei . Infect Immun 1996; 64:782–790
    [Google Scholar]
  30. Santanirand P, Harley VS, Dance DAB, Drasar BS, Bancroft GJ. Obligatory role of gamma interferon for host survival in a murine model of infection with Burkholderia pseudomallei . Infect Immun 1999; 67:3593–3600
    [Google Scholar]
  31. Lertmemongkolchai G, Cai G, Hunter CA, Bancroft GJ. Bystander activation of CD8+ T cells contribute to the rapid production of IFN-gamma in response to bacterial pathogens. J Immunol 2001; 166:1097–1105 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/0022-1317-51-12-1055
Loading
/content/journal/jmm/10.1099/0022-1317-51-12-1055
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error