1887

Abstract

Summary

Reduced cell permeability and target penicillin-binding protein modification were investigated as mechanisms of intrinsic resistance in strains of resistant to carbenicillin (MIC ≫ 128 mg/L) independently of -lactamase production. The carbenicillin-resistant strains were also remarkably resistant to other -lactams, quinolones, tetracyline and chloramphenicol, whereas carbenicillin-hypersusceptible strains (MIC ≪ 2 mg/L) were very sensitive to these antimicrobial compounds. These observations suggested a non-specific mechanism of resistance involving reduced permeability of the outer layers of the bacterial cell. However, carbenicillin-resistant and carbenicillin-sensitive strains had identical porin levels and the target penicillin-binding proteins of carbenicillin-resistant (MIC 256-2048 mg/L), carbenicillin-sensitive (MIC 64 mg/L) and carbenicillin-hypersusceptible (MIC 0.015 mg/L) strains were equally sensitive to -lactams. Thus, subtle changes in porin function or additional outer-membrane barriers regulating permeability may be involved in intrinsic resistance.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-18-2-261
1984-10-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/18/2/medmicro-18-2-261.html?itemId=/content/journal/jmm/10.1099/00222615-18-2-261&mimeType=html&fmt=ahah

References

  1. Angus B. L., Carey A. M., Caron D. A., Kropinski A. M. B., Hancock R. E. W. 1982; Outer membrane permeability in Pseudomonas aeruginosa: comparison of a wild-type with an antibiotic-supersusceptible mutant. Antimicrobial Agents and Chemotherapy 21:299–309
    [Google Scholar]
  2. Chopra I., Ball P. 1982; Transport of antibiotics into bacteria. Advances in Microbial Physiology 23:183–240
    [Google Scholar]
  3. Curtis N. A. C., Brown C., Boxall M., Boulton M. G. 1978; Modified peptidoglycan transpeptidase activity in a carbenicillin-resistant mutant of Pseudomonas aeruginosa 18s. Antimicrobial Agents and Chemotherapy 14:246–251
    [Google Scholar]
  4. Furth A. 1979; The β-lactamases of Pseudomonas aeruginosa . In Hamilton-Miller J. M. T., Smith J. T. (eds) Beta-lactamases. Academic Press; London: pp 403–428
    [Google Scholar]
  5. Godfrey A. J., Bryan L. E., Rabin H. R. 1981; β-lactam-resistant Pseudomonas aeruginosa with modified penicillin-binding proteins emerging during cystic fibrosis treatment. Antimicrobial Agents and Chemotherapy 19:705–711
    [Google Scholar]
  6. Hancock R. E. W., Carey A. M. 1979; Outer membrane of Pseudomonas aeruginosa: heat-and 2-mercaptoethanol-modifiable proteins. Journal of Bacteriology 140:902–910
    [Google Scholar]
  7. Hancock R. E. W., Decad G. M., Nikaido H. 1979; Identification of the protein producing transmembrane diffusion pores in the outer membrane of Pseudomonas aeruginosa PA 01. Biochimica et Biophysica Acta 554:323–331
    [Google Scholar]
  8. Hancock R. E. W., Carey A. M. 1980; Protein D1—A glucose-inducible, pore-forming protein from the outer membrane of Pseudomonas aeruginosa . FEMS Microbiology Letters 8:105–109
    [Google Scholar]
  9. Hancock R. E. W., Irvin R. T., Costerton J. W., Carey A. M. 1981; Pseudomonas aeruginosa outer membrane: peptidoglycan associated proteins. Journal of Bacteriology 145:628–631
    [Google Scholar]
  10. Hancock R. E. W., Poole K., Benz R. 1982; Outer membrane protein P of Pseudomonas aeruginosa: regulation by phosphate deficiency and formation of small anion-specific channels in lipid bilayer membranes. Journal of Bacteriology 15:730–738
    [Google Scholar]
  11. Jaffe A., Chabbert Y. A., Semonin O. 1982; Role of porin proteins Omp F and Omp C in the permeation of β-lactams. Antimicrobial Agents and Chemotherapy 22:946–948
    [Google Scholar]
  12. King J. D., Farmer T., Reading C., Sutherland R. 1980; Sensitivity to carbenicillin and ticarcillin and the β-lactamases of Pseudomonas aeruginosa in the UK in 1978-79. Journal of Clinical Pathology 33:297–301
    [Google Scholar]
  13. Laemmli U. K., Favre M. 1973; Maturation of the head of bacteriophage T4. 1. DNA packaging events. Journal of Molecular Biology 80:575–599
    [Google Scholar]
  14. Livermore D. M., Williams R. J., Williams J. D. 1981; Comparison of the β-lactamase stability and the in vitro activity of cefoperazone, cefotaxime, cefsulodin, ceftazidime, moxalactam and ceftriaxone against Pseudomonas aeruginosa . Journal of Antimicrobial Chemotherapy 8:323–331
    [Google Scholar]
  15. Livermore D. M., Williams R. J., Lindridge M. A., Slack R. C. B., Williams J. D. 1982; Pseudomonas aeruginosa isolates with modified beta-lactamase inducibility: effects on beta-lactam sensitivity. Lancet 1:1466–1467
    [Google Scholar]
  16. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193:265–275
    [Google Scholar]
  17. Matthew M., Harris A. M., Marshall M. J., Ross G. W. 1975; The use of analytical isoelectric focusing for detection and identification of β-lactamases. Journal of General Microbiology 88:169–178
    [Google Scholar]
  18. Mirelman D., Nuchamowitz Y., Rubinstein E. 1981; Insensitivity of peptidoglycan biosynthetic reactions to β-lactam antibiotics in a clinical isolate of Pseudomonas aeruginosa . Antimicrobial Agents and Chemotherapy 19:687–695
    [Google Scholar]
  19. Nicas T. I., Hancock R. E. W. 1983; Pseudomonas aeruginosa outer membrane permeability: isolation of a porin protein F-deficient mutant. Journal of Bacteriology 153:281–285
    [Google Scholar]
  20. Nikaido H., Song S. A., Shaltiel L., Nurminen M. 1977; Outer membrane of Salmonella XIV. Reduced transmembrane diffusion rates in porin deficient mutants. Biochemical and Biophysical Research Communications 76:324–330
    [Google Scholar]
  21. Nikaido H. 1981; Outer membrane permeability of bacteria: resistance and accessibility of targets. In Salton M., Shockman G. D. (eds) β-Lactam antibiotics: mode of action, new developments and future prospects. Academic Press; New York: pp 249–260
    [Google Scholar]
  22. Noguchi H., Matsuhashi M., Mitsuhashi S. 1979; Comparative studies of penicillin-binding proteins in Pseudomonas aeruginosa and Escherichia coli . European Journal of Biochemistry 100:41–49
    [Google Scholar]
  23. Richmond M. H. 1975; Antibiotic inactivation and its genetic basis. In Brown M. R. W. (ed) Resistance of Pseudomonas aeruginosa. John Wiley; London: pp 1–33
    [Google Scholar]
  24. Rodriguez-Tebar A., Rojo F., Damaso D., Vazquez D. 1982; Carbenicillin resistance of Pseudomonas aeruginosa . Antimicrobial Agents and Chemotherapy 22:255–261
    [Google Scholar]
  25. Rosselet A., Zimmermann W. 1973; Mutants of Pseudomonas aeruginosa with impaired β-lactamase inducibility and increased sensitivity to β-lactam antibiotics. Journal of General Microbiology 76:455–457
    [Google Scholar]
  26. Sabath L. D., Jago M., Abraham E. P. 1965; Cephalosporinase and penicillinase activities of a β-lactamase from Pseudomonas pyocyanea . Biochemical Journal 96:739–752
    [Google Scholar]
  27. Scudamore R. A., Goldner M. 1982; Limited contribution of the outer-membrane penetration barrier towards intrinsic antibiotic resistance in Pseudomonas aeruginosa . Canadian Journal of Microbiology 28:169–175
    [Google Scholar]
  28. Spratt B. G. 1977; Properties of the penicillin-binding proteins of Escherichia coli K12. European Journal of Biochemistry 72:341–352
    [Google Scholar]
  29. Spratt B. G. 1980; Biochemical and genetical approaches to the mechanism of action of penicillin. Philosophical Transactions of the Royal Society (London) 289B:273–283
    [Google Scholar]
  30. Williams R. J., Lindridge M. A., Said A. A., Livermore D. M., Williams J. D. National survey of antibiotic resistance in Pseudomonas aeruginosa . Journal of Antimicrobial Chemotherapy in press
    [Google Scholar]
  31. Williams R. J., Livermore D. M., Lindridge M. A., Said A. A., Williams J. D. 1984; Mechanisms of beta-lactam resistance in British isolates of Pseudomonas aeruginosa . Journal of Medical Microbiology 17:283–294
    [Google Scholar]
  32. Yoshimura F., Nikaido H. 1982; Permeability of Pseudomonas aeruginosa outer membrane to hydrophilic solutes. Journal of Bacteriology 152:636–642
    [Google Scholar]
  33. Zimmermann W. 1979; Penetration through the Gram-negative cell wall: a co-determinant of the efficacy of beta-lactam antibiotics. International Journal of Clinical Pharmacology and Biopharmacy 17:131–134
    [Google Scholar]
  34. Zimmermann W. 1980; Penetration of β-lactam antibiotics into their target enzymes in Pseudomonas aeruginosa: comparison of a highly sensitive mutant with its parent strain. Antimicrobial Agents and Chemotherapy 18:94–100
    [Google Scholar]
  35. Zimmermann W., Rosselet A. 1977; Function of the outer membrane of Escherichia coli as a permeability barrier to beta-lactam antibotics. Antimicrobial Agents and Chemotherapy 12:368–372
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-18-2-261
Loading
/content/journal/jmm/10.1099/00222615-18-2-261
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error