1887

Abstract

Summary

The ability of various haem-and non-haem-iron-containing compounds to support the growth of iron-limited cultures of was assessed in a plate bioassay. Only haemin or the haem-containing proteins, bovine haemoglobin, human haemoglobin and bovine catalase, but not equine cytochrome C, were capable of serving as the sole exogenous iron source. Complexes of haptoglobin-haemoglobin and haem-serum albumin retained the ability to function as iron substrates. In contrast, no growth was observed with FeCI, human lactoferrin and human transferrin. Siderophore production was not detected with a universal chemical assay. Outer-membrane-protein profiles derived from iron-starved cultures revealed four iron-regulated polypeptides of 65, 50, 40.5 and 40.5 Kda. These results indicate that haem can supply the requisite iron for growth of .

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-34-6-317
1991-06-01
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/jmm/34/6/medmicro-34-6-317.html?itemId=/content/journal/jmm/10.1099/00222615-34-6-317&mimeType=html&fmt=ahah

References

  1. Bullen J. J. The significance of iron in infection. Rev Infect Dis 1981; 3:1127–1138
    [Google Scholar]
  2. Weinberg E. D. Iron withholding: a defence against infection and neoplasia. Physiol Rev 1984; 64:65–102
    [Google Scholar]
  3. Neilands J. B. Microbial envelope proteins related to iron. Amu Rev Microbiol 1982; 36:285–309
    [Google Scholar]
  4. Schryvers A. B. Characterization of the human transferrin and lactoferrin receptors in Haemophilus influenzae. Mol Microbiol 1988; 2: Mil-All
    [Google Scholar]
  5. Schryvers A. B. Identification of the transferrin-and lactoferrin-binding proteins in Haemophilus influenzae. J Med Microbiol 1989; 29:121–130
    [Google Scholar]
  6. Lee B. C., Bryan L. E. Identification and comparative analysis of the lactoferrin and transferrin receptors among clinical isolates of gonococci. J Med Microbiol 1989; 28:199–204
    [Google Scholar]
  7. Schryvers A. B., Morris L. J. Identification and characterization of the transferrin receptor from Neisseria meningitidis. Mol Microbiol 1988; 2:281–288
    [Google Scholar]
  8. Morse S. A. Chancroid and Haemophilus ducreyi. Clin Microbiol Rev 1989; 2:137–157
    [Google Scholar]
  9. Albritton W. L., MacLean I. W., Bertram P. D., Ronald A. R. Haemin requirements in Haemophilus with special reference to H. ducreyi. In Kilian M, Frederiksen W., Biberstein E. L. (eds) Haemophilus, Pasteurella and Actinobacillus London: Academic Press; 198175–82
    [Google Scholar]
  10. Hammond G. W., Lian C.-J., Wilt J. C., Albritton W. L., Ronald A. L. Determination of the hemin requirement of Haemophilus ducreyi: evaluation of the porphyrin test and media used in the satellite growth test. J Clin Microbiol 1978; 7:243–246
    [Google Scholar]
  11. Cameron D. W., Simonsen J. N., D’Costa L. J. Female to male transmission of human immunodeficiency virus type I: risk factors for seroconversion in men. Lancet 1989; ii:403–407
    [Google Scholar]
  12. Schmid G. P., Sanders L. L., Blount J. H., Alexander E. R. Chancroid in the United States. Reestablishment of an old disease. JAMA 1987; 258:3265–3268
    [Google Scholar]
  13. Albritton W. L. Biology of Haemophilus ducreyi. Microbiol Rev 1989; 53:377–389
    [Google Scholar]
  14. Holloway B. W., Krishnapillai V., Morgan A. F. Chromosomal genetics of Pseudomonas. Microbiol Rev 1979; 43:73–102
    [Google Scholar]
  15. Schwyn B., Neilands J. B. Universal chemical assay for the detection and determination of siderophores. Anal Biochem 1987; 160:47–56
    [Google Scholar]
  16. Javid J. Human serum haptoglobins. A brief review. Semin Hematol 1967; 4:35–52
    [Google Scholar]
  17. Stull T. L. Protein sources of heme for Haemophilus influenzae. Infect Immun 1987; 55:148–153
    [Google Scholar]
  18. Wejman J. C., Hovsepian D., Wall J. S., Hainfeld J. F., Greer J. Structure of haptoglobin and the haptoglobin-hemoglobin complex by electron microscopy. J Mol Biol 1984; 174:319–341
    [Google Scholar]
  19. Hancock R. E. W., Nikaido H. Outermembranesofgram-negative bacteria. XIX Isolation from Pseudomonas aeruginosa
    [Google Scholar]
  20. PAO1 and use in reconstitution and definition of the permeability barrier J Bacteriol 1978; 136:381–390
    [Google Scholar]
  21. Godfrey A. J., Hatletid L., Bryan L. E. Correlation between lipopolysaccharide structure and permeability resistance in β-lactam-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 1984; 26:181–186
    [Google Scholar]
  22. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. Protein measurement with the folin phenol reagent. J Biol Chem 1951; 193:265–275
    [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 . Nature 1970; 227:680–685
    [Google Scholar]
  24. Oakley B. R., Kirsch D. R., Morris N. R. A simplified ultrasensitive silver stain for detecting proteins in polyacrylamide gels. Ami Biochem 1980; 105:361–363
    [Google Scholar]
  25. Palumbo G., Tecce M. F. A four-to sixfold enhancement in sensitivity for detecting trace proteins in dye or silver stained polyacrylamide gels. Anal Biochem 1983; 134:254–258
    [Google Scholar]
  26. Moore R. W., Welton A. F., Aust S. D. Detection of hemo-proteins in SDS-polyacrylamide gels. Methods Enzymol 1978; 52:324–331
    [Google Scholar]
  27. Cox C. D., Adams P. Siderophore activity of pyoverdin for Pseudomonasaerugimsa. InfectImun 1985; 48:130–138
    [Google Scholar]
  28. Cox C. D., Graham R. Isolation of an iron-binding compound from Pseudomoms aerugimsa. J Bacteriol 1979; 137:357–364
    [Google Scholar]
  29. Archibald F. S., DeVoe I. W. Removal of iron from human transferrin by Neisseria meningiditis. FEMS Microbiol Lett 1979; 6:159–162
    [Google Scholar]
  30. Pidcock K. A., Wooten J. A., Daley B. A., Stull T. L. Iron acquisition by Haemophilus influenzae. Infect Immun 1988; 56:721–725
    [Google Scholar]
  31. Dyer D. W., West E. P., Sparling P. F. Effects of serum carrier proteins on the growth of pathogenic Neisseriae with heme-bound iron. Infect Immun 1987; 55:2171–2175
    [Google Scholar]
  32. Oberhofer T. R., Black A. E. Isolation and cultivation of Haemo philus ducreyi. J Clin Microbiol 1982; 15:625–629
    [Google Scholar]
  33. Baine W., Joslin S. Washington DC, American Society for Microbiology. Abstracts of the Annual Meeting 1988b34–35
    [Google Scholar]
  34. Perutz M. F. Regulation of oxygen affinity of hemoglobin: Influence of structure of the globin on the heme iron. Annu Rev Biochem 1979; 48:327–386
    [Google Scholar]
  35. Salemme F. R. Structure and function of cytochromes C. Annu Rev Biochem 1977; 46:299–329
    [Google Scholar]
  36. White D. C., Granick S. Hemin biosynthesis in Haemophilus influenzae. J Bacteriol 1963; 85:842–850
    [Google Scholar]
  37. Herrington D. A., Sparling P. F. Haemophilus influenzae can use human transferrin as a sole source for required iron. Infect Immun 1985; 48:248–251
    [Google Scholar]
  38. Coulton J. W., Pang J. C. S. Transport of hemin by Haemophilus influenzae type-b. Curr Microbiol 1983; 9:93–98
    [Google Scholar]
  39. West S. E. H., Sparling P. F. Response of Neisseria gomrrhoeae to iron limitation: Alterations in expression of membrane proteins without apparent siderophore production. Infect Immun 1985; 47:388–394
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-34-6-317
Loading
/content/journal/jmm/10.1099/00222615-34-6-317
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error