1887

Abstract

strains from human infection (21) were compared with strains from animals (17 biotype A, 2 biotype AB, 4 biotype B, 1 biotype unknown), and the type strain NCTC 10575 in conventional tests reaction patterns (CTRPs), SDS-PAGE and pyrolysis mass spectrometry (PMS). Classifications from the three approaches showed one major consensus group comprising all human strains, and another comprising animal biotype A strains. Animal biotype B strains and one animal strain, designated with some doubt to biotype A, were outliers of the consensus ‘human strain’ group. Again, animal biotype AB strains were outliers of the consensus ‘animal biotype A group’, as was the type strain, which was clearly atypical in conventional tests and PMS. Colonial and microscopic characters showed good discrimination between the major consensus groups. However, only haemagglutination and the API-ZYM leucine arylamidase of the biochemical tests discriminated well between these groups. The ‘animal biotype A group’ clearly corresponds to subsp. , but synonymy of subsp. with the group of human strains was less certain. The latter subspecies was described solely on the basis of animal strains, all of biotype B, but each of four animal biotype B strains in this study was an outlier of the ‘human strain group’ in one or more of the characterisation approaches. Strains of causing human infection were clearly distinct from the biotype A strains commonly found in animal infection. This has implications for the validity of animal models of human necrobacillosis. In view of these differences, it would be useful to have a validated designation for strains causing human infection. However, it would be premature to assume that the definition of subsp. encompasses the human strains in the absence of confirmatory DNA-homology and 16S rRNA-sequencing studies.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-46-10-865
1997-10-01
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/jmm/46/10/medmicro-46-10-865.html?itemId=/content/journal/jmm/10.1099/00222615-46-10-865&mimeType=html&fmt=ahah

References

  1. Alston J. M. Necrobacillosis in Great Britain. BMJ 1955; 2:1524–1528
    [Google Scholar]
  2. Moore W. E. C., Holdeman L. Y., Kelly R. W. Fusobacteria. In Krieg N. R., Holt J. G. (eds) Bergey’s Manual of systematic bacteriology vol 1 Baltimore: Williams & Wilkins; 1984631–637
    [Google Scholar]
  3. Summanen P., Baron E. J., Citron D. M., Strong C. A., Wexler H. M., Finegold S. M. Wadsworth Anaerobic bacteriology manual. 5th edn Belmont, CA: Star Publishing Company; 1993
    [Google Scholar]
  4. Duerden B. I. The Bacteroidaceae: Bacteroides, Fusobacterium and Leptotrichia. In Parker M. T., Collier L. H. (eds) Topley and Wilson’s Principles of bacteriology, virology and immunity 8th edn, vol 2 London: Edward Arnold; 1990551–575
    [Google Scholar]
  5. Shinjo T., Miyazato X., Kiyoyama H. Adherence of Fusobacterium necrophorum biovar A and B to erythrocytes and tissue culture cells. Ann Inst Pasteur Microbiol 1988; 139:453–460
    [Google Scholar]
  6. Kanoe M., Yamanaka M. Bovine platelet aggregation by Fusobacterium necrophorum. J Med Microbiol 1989; 29:1317
    [Google Scholar]
  7. Loeffler F. Untersuchungen über die Bedentung der Mikroor-ganismen für die Entstehung der Diphtherie beim menschen, bei der Taube und beim kalbe. Mitt K Gesundheitsamte 1884; 2:421–429
    [Google Scholar]
  8. Altman P., Schmorl G. Ueber ein pathogenes Fadenbacterium (Streptothrix cuniculi). Deutsche Zeitschrift für Thiermedizin, Leipzig 1890; 1:17375–408
    [Google Scholar]
  9. Bang B. L. F. Die Aetiologie des seuchenhaften (“infectiӧsen”) Verwerfens. Zeitschrift für Thiermedizin 1897; 1:241–278
    [Google Scholar]
  10. Hallé J. Recherches nur la bacteriologie du canal genital de la femme. Thèse de Paris 1898
    [Google Scholar]
  11. Lemierre A. On certain septicaemias due to anaerobic organisms. Lancet 1936; 1:701–703
    [Google Scholar]
  12. Moore-Gillon J., Lee T. H., Eykyn S. J., Phillips I. Necrobacillosis: a forgotten disease. BMJ 1984; 288:1526–1527
    [Google Scholar]
  13. Langworth B. F. Fusobacterium necrophorum: its characteristics and role as an animal pathogen. Bacteriol Rev 1977; 41:373–390
    [Google Scholar]
  14. Ashton D. G. In: The scientific report of the Zoological Society of London 1979–1981. J Zool Lond 1982; 197:91–92
    [Google Scholar]
  15. Fievez L. Étude comparée des souches de Sphaerophorus necrophorus isolates chez l’homme et chez l’animal. Brussels: Presses Académiques Européennes; 1963
    [Google Scholar]
  16. Shinjo T., Hiraiwa K., Miyazato S. Recognition of biovar C of Fusobacterium necrophorum (Flugge) Moore and Holdeman as Fusobacterium pseudonecrophorum sp. nov., nom. rev. (ex Prevot 1940). Int J Syst Bacteriol 1990; 40:71–73
    [Google Scholar]
  17. Dack G. M., Dragstedt L. R., Heinz T. E. Further studies on Bacterium necrophorum isolated from cases of chronic ulcerative colitis. J Infect Dis 1937; 60:335–355
    [Google Scholar]
  18. Smith G. R., Thornton E. A. Pathogenicity of Fusobacterium necrophorum strains from man and animals. Epidemiol Infect 1993; 110:499–506
    [Google Scholar]
  19. Shinjo T., Miyazato S., Kaneuchii C., Mitsuoka T. Physiological and biochemical characteristics of Fusobacterium necrophorum biovar A and biovar B strains and their deoxyribonucleic acid homology. Nippon Juigaku Zasshi 1981; 43:233–241
    [Google Scholar]
  20. Shinjo T., Fujisawa T., Mitsuoka T. Proposal of two subspecies of Fusobacterium necrophorum (Flügge) Moore and Holdeman: Fusobacterium necrophorum subsp necrophorum subsp. nov., nom. rev. (ex Halle 1898), and Fusobacterium necrophorum subsp. funduliforme subsp. nov., nom. rev. (ex Flügge 1886).. Int J Syst Bacteriol 1991; 41:395–397
    [Google Scholar]
  21. Amoako K. K., Goto Y., Shinjo T. Comparison of extracellular enzymes of Fusobacterium necrophorum subsp necrophorum and Fusobacterium necrophorum subsp. funduliforme. J Clin Microbiol 1993; 31:2244–2247
    [Google Scholar]
  22. Nicholson L. A., Morrow C. J., Comer L. A., Hodgson A. L. M. Phylogenetic relationship of Fusobacterium necrophorum A, AB, and B biotypes based upon 16S rRNA gene sequence analysis. Int J Syst Bacteriol 1994; 44:315–319
    [Google Scholar]
  23. Brown R., Lough H. G., Poxton I. R. Phenotypic characteristics and lipopolysaccharides of human and animal isolates of Fusobacterium necrophorum. J Med Microbiol 1997; 46:873–878
    [Google Scholar]
  24. Smith G. R., Thornton E. A. Classification of human and animal strains of Fusobacterium necrophorum by their pathogenic effects in mice. J Med Microbiol 1997; 46:879–882
    [Google Scholar]
  25. Brazier J. S. Yellow fluorescence of fusobacteria. Lett Appl Microbiol 1986; 2:125–126
    [Google Scholar]
  26. Lombard G. L., Dowell V. R. Comparison of three reagents for detecting indole production by anaerobic bacteria in microtest systems. J Clin Microbiol 1983; 18:609–613
    [Google Scholar]
  27. Phillips K. D. A simple and sensitive technique for determining the fermentation reactions of non-sporing anaerobes. J Appl Bacteriol 1976; 41:325–328
    [Google Scholar]
  28. Frazier W. C. A method for the detection of changes in gelatin due to bacteria. J Infect Dis 1926; 39:302–309
    [Google Scholar]
  29. Allen P. W. A simple method for the classification of bacteria as to diastase production. J Bacteriol 1918; 3:15–17
    [Google Scholar]
  30. Holdeman L. V., Cato E. P., Moore W. E. C. Chromatographic procedures for analysis of acid and alcohol products. In Anaerobe laboratory manual Blacksburg, Virginia: Virginia Polytechnic Institute and State University; 1977134–135
    [Google Scholar]
  31. Magee J. T., Hindmarch M. J., Bennett K. W., Duerden B. I., Aries R. E. A pyrolysis mass spectrometry study of fusobacteria. J Med Microbiol 1989; 28:227–236
    [Google Scholar]
  32. Read S. M., Northcote D. H. Minimization of variation in the response to different proteins of the Coomassie blue G dye-binding assay for protein. Anal Biochem 1981; 116:53–64
    [Google Scholar]
  33. Hames B. D. One dimensional polyacrylamide gel electrophoresis. In Hames B. D., Rickwood D. (eds) Gel electrophoresis of proteins Oxford: IRL Press; 19901–147
    [Google Scholar]
  34. Chen H., Cheng H., Bjerknes M. One-step Coomassie brilliant blue R-250 staining of proteins in polyacrylamide gel. Anal Biochem 1993; 212:295–296
    [Google Scholar]
  35. Berg J. N., Scanlon C. M. Studies of Fusobacterium necrophorum from bovine hepatic abscesses: biotypes, quantitation, virulence, and antibiotic susceptibility. Am J Vet Res 1982; 43:1580–1586
    [Google Scholar]
  36. Smith G. R. Pathogenicity of Fusobacterium necrophorum biovar B. Res Vet Sci 1992; 52:260–261
    [Google Scholar]
  37. Tan Z. L., Nagaraja T. G., Chengappa M. M. Biochemical and biological characterization of ruminal Fusobacterium necrophorum. FEMS Microbiol Lett 1994; 120:81–86
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-46-10-865
Loading
/content/journal/jmm/10.1099/00222615-46-10-865
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error