1887

Abstract

Over a period of 2.5 years, 42 cases of gastro-enteritis caused by nalidixic acid-resistant serotype Typhimurium occurred in Malaga. The epidemiological relationship among the strains involved was investigated by analysis of plasmid profile and of chromosomal DNA by pulsed-field gel electrophoresis (PFGE). Despite having different plasmid profiles, all 42 nalidixic-acid resistant Typhimurium isolates had evolved from one clone as shown by analysis of chromosomal DNA by PFGE. The mechanism of quinolone resistance in these Typhimurium isolates was also investigated. Analysis of outer-membrane proteins and lipopolysaccharide from quinolone-susceptible and -resistant clinical isolates tested showed no differences. All nalidixic acid-resistant isolates had MICs for ciprofloxacin of 0.25 mg/L and for nalidixic acid of 1024 mg/L. Polymerase chain reaction fragments of 285 bp, containing the quinolone resistance-determining region of the A gene, and of 237 bp, containing the region of C homologous to the quinolone resistance-determining region of the A gene, were sequenced. All resistant isolates presented a change at Ser-83 to Phe in the GyrA protein, but no changes were observed in the ParC protein. These findings indicated that this mutation in A plays a major role in the acquisition of nalidixic-acid resistance in clinical isolates of Typhimurium.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-46-7-623
1997-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/46/7/medmicro-46-7-623.html?itemId=/content/journal/jmm/10.1099/00222615-46-7-623&mimeType=html&fmt=ahah

References

  1. Asperilla M. O., Smego R. A., Scott L. K. Quinolone antibiotics in the treatment of Salmonella infections. Rev Infect Dis 1990; 12:873–889
    [Google Scholar]
  2. Bamass S., Franklin J., Tabaqchali S. The successful treatment of multiresistant non-enteric salmonellosis with seven day oral ciprofloxacin. J Antimicrob Chemother 1990; 25:299–300
    [Google Scholar]
  3. Pichler H. E. T., Diridl G., Stickler K., Wolf D. Clinical efficacy of ciprofloxacin compared with placebo in bacterial diarrhea. Am J Med 1987; 82: Suppl 4A329–332
    [Google Scholar]
  4. Neill M. A., Opal S. M., Heelan J. Failure of ciprofloxacin to eradicate convalescent fecal excretion after acute salmonellosis: experience during an outbreak in health care workers. Ann Intern Med 1991; 114:195–199
    [Google Scholar]
  5. Piddock L. J. V., Griggs D. J., Hall M. C., Jin Y. F. Ciprofloxacin resistance in clinical isolates of Salmonella typhimurium obtained from two patients. Antimicrob Agents Chemother 1993; 37:662–666
    [Google Scholar]
  6. Heisig P. High-level fluoroquinolone resistance in a Salmonella typhimurium isolate due to alterations in both gyrk and gyrB genes. J Antimicrob Chemother 1993; 32:367–377
    [Google Scholar]
  7. Reyna F., Huesca M., González V., Fuchs L. Y. Salmonella typhimurium gyrk mutations associated with fluoroquinolone resistance. Antimicrob Agents Chemother 1995; 39:1621–1623
    [Google Scholar]
  8. Brown J. C., Thomson C. J., Amyes S. G. B. Mutations of the gyrk gene of clinical isolates of Salmonella typhimurium and three other Salmonella species leading to decreased susceptibilities to 4-quinolone drugs. J Antimicrob Chemother 1996; 37:351–356
    [Google Scholar]
  9. Khodursky A. B., Zechiedrich E. L., Cozzarelli N. R. Topoisomerase IV is a target of quinolones in Escherichia coli. Proc Natl Acad Sci USA 1995; 92:11801–11805
    [Google Scholar]
  10. Vila J., Ruiz J., Goñi P., Jimenez de Anta M. T. Detection of mutations in parC gene of quinolone-resistant clinical isolates of Escherichia coli. Antimicrob Agents Chemother 1996; 40:491–493
    [Google Scholar]
  11. Kado C. L., Liu S. T. Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 1981; 145:1365–1373
    [Google Scholar]
  12. Marcos M. A., Jimenez de Anta M. T., Vila J. Correlation of six methods for typing nosocomial isolates of Acinetobacter baumannii. J Med Microbiol 1995; 42:328–335
    [Google Scholar]
  13. National Committee for Clinical Laboratory Standards Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 2nd edn. Approved standard M7-A2 Villanova, PA: National Committee for Clinical Laboratory Standards; 1990
    [Google Scholar]
  14. National Committee for Clinical Laboratory Standards Performance standards for antimicrobial disk susceptibility tests. M2-A4. 4th edn Villanova, PA: National Committee for Clinical Laboratory Standards; 1990
    [Google Scholar]
  15. Mortimer P. G. S., Piddock L. J. V. A comparison of methods used for measuring the accumulation of quinolones by Enterobacteriaceae, Pseudomonas aeruginosa and Staphylococcus aureus. J Antimicrob Chemother 1991; 28:639–653
    [Google Scholar]
  16. Chart H., Trust T. J. Characterization of the surface antigens of the marine fish pathogens Vibrio anguillarum, and Vibrio ordalii. Can J Microbiol 1984; 30:703–710
    [Google Scholar]
  17. Filip C., Fletcher G., Wulff J. L., Earhart C. F. Solubilization of the cytoplasmic membrane of Escherichia coli by the ionic detergent sodium-lauryl sarcosinate. J Bacteriol 1973; 115:717–722
    [Google Scholar]
  18. Hitchcock P. J., Brown T. M. Morphological heterogenecity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol 1983; 154:269–277
    [Google Scholar]
  19. Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 1982; 119:115–119
    [Google Scholar]
  20. Vila J., Ruiz J., Marco F. Association between double mutation in gyrA gene of ciprofloxacin-resistant clinical isolates of Escherichia coli and MICs. Antimicrob Agents Chemother 1994; 38:2477–2479
    [Google Scholar]
  21. Swanberg S. L., Wang J. C. Cloning and sequencing of the Escherichia coli gyrA coding for the A subunit of DNA gyrase. J Mol Biol 1987; 197:729–736
    [Google Scholar]
  22. Luttinger A. L., Springer A. L., Schmid M. B. A cluster of genes that affects nucleoid segregation in Salmonella typhimurium. New Biol 1991; 3:687–697
    [Google Scholar]
  23. Borrego J. J., Castro D., Jimenez-Notario M. Comparison of epidemiological markers of Salmonella strains isolated from different sources in Spain. J Clin Microbiol 1992; 30:3058–3064
    [Google Scholar]
  24. Holmberg S. D., Wachsmuth I. K., Hickman-Brenner F. W., Cohen M. L. Comparison of plasmid profile analysis, phage typing, and antimicrobial susceptibility testing in characterizing Salmonella typhimurium isolates from outbreaks. J Clin Microbiol 1984; 19:100–104
    [Google Scholar]
  25. Liu S.-L., Hessel A., Sanderson K. E. The Xbal-Blnl-Ceul genomic cleavage map of Salmonella typhimurium LT2 determined by double digestion, end labelling, and pulsed-field electrophoresis. J Bacteriol 1993; 175:4104–4120
    [Google Scholar]
  26. Liu S.-L., Sanderson K. E. A physical map of the Salmonella typhimurium LT2 genome made by using Xba I analysis. J Bacteriol 1992; 174:1662–1672
    [Google Scholar]
  27. Hirai K., Aoyama H., Irikura T., Iyobe S., Mitsuhashi S. Differences in susceptibility to quinolones of outer membrane mutants of Salmonella typhimurium and Escherichia coli. Antimicrob Agents Chemother 1986; 29:535–538
    [Google Scholar]
  28. Lewin C. S., Nandivada L. S., Amyes S. G. B. Multiresistant salmonella and fluoroquinolones. J Antimicrob Chemother 1991; 27:147–149
    [Google Scholar]
  29. Howard A. J., Joseph T. D., Bloodworth L. L. O., Frost J. A., Chart H., Rowe B. The emergence of ciprofloxacin resistance in Salmonella typhimurium. J Antimicrob Chemother 1990; 26:296–298
    [Google Scholar]
  30. Cohen S. P., McMurry L. M., Hooper D. C., Wolfson J. S., Levy S. B. Cross-resistance to fluoroquinolones in multiple-antibiotic-resistant (Mar) Escherichia coli selected by tetracycline or chloramphenicol: decreased drug accumulation associated with membrane changes in addition to OmpF reduction. Antimicrob Agents Chemother 1989; 33:1318–1325
    [Google Scholar]
  31. Cohen S. P., Yan W., Levy S. B. A multidrug resistance regulatory chromosomal locus is widespread among enteric bacteria. J Infect Dis 1993; 168:484–488
    [Google Scholar]
  32. Hooper D. C., Wolfson F. C. Mechanisms of bacterial resistance to quinolones. In Hooper D. C., Wolfson J. C. (eds) Quinolone antimicrobial agents 2nd edn Washington, DC: American Society for Microbiology; 199397–119
    [Google Scholar]
  33. Griggs D. J., Gensberg K., Piddock L. J. Mutations in gyrA gene of quinolone-resistant Salmonella serotypes isolated from humans and animals. Antimicrob Agents Chemother 1996; 40:1009–1013
    [Google Scholar]
  34. Brown J. C., Shanahah P. H. A., Jesudason M. V., Thomson C. J. Mutations responsible for reduced susceptibility to 4-quinolones in clinical isolates of multi-resistant Salmonella typhi in India. J Antimicrob Chemother 1996; 37:891–900
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-46-7-623
Loading
/content/journal/jmm/10.1099/00222615-46-7-623
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error