1887

Abstract

Summary

Interleukin-2 (IL-2)-activated lymphocytes interact directly with, and inhibit, the growth of hyphae. -stimulated natural killer (NK1.1) lymphocytes were demonstrated to secrete a soluble product capable of directly affecting yeast forms. Antibodies specific for interferon-γ completely eliminated the antifungal activity of the NK1.1 lymphocyte product and diminished the antifungal activity of NK1.1 lymphocytes against . Antibodies specific for other cytokines had no such effect. These data demonstrate that -stimulated NK1.1 lymphocytes have antifungal activity against yeast cells the release of interferon-γ. This antifungal activity was demonstrable only against the yeast form of the fungus, with no effect on hyphae.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/00222615-47-11-1007
1998-11-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jmm/47/11/medmicro-47-11-1007.html?itemId=/content/journal/jmm/10.1099/00222615-47-11-1007&mimeType=html&fmt=ahah

References

  1. Murphy J. W. Mechanisms of natural resistance to human pathogenic fungi. Annu Rev Microbiol 1991; 45:509–538
    [Google Scholar]
  2. Arancia G., Molinari A., Crateri P. Noninhibitory binding of human interleukin-2-activated natural killer cells to the germ tube forms of Candida albicans. Infect Immun 1995; 63:280–288
    [Google Scholar]
  3. Beno D. W. A., Mathews H. L. Growth inhibition of Candida albicans by interleukin-2 induced splenocytes. Infect Immun 1992; 60:853–863
    [Google Scholar]
  4. Zunino S. J., Hudig D. Interactions between human natural killer (NK) lymphocytes and yeast cells: human NK cells do not kill Candida albicans, although C. albicans blocks NK lysis of K562 cells. Infect Immun 1988; 56:564–569
    [Google Scholar]
  5. Blanchard D. K., Michelini-Norris M. B., Djeu J. Y. Production of granulocyte-macrophage colony-stimulating factor by large granular lymphocytes stimulated with Candida albicans: role in activation of human neutrophil function. Blood 1991; 77:2259–2265
    [Google Scholar]
  6. Forsyth C. B., Mathews H. L. A quantitative radiometric assay to measure mammalian cell binding to hyphae of Candida albicans. J Immunol Methods 1993; 165:113–119
    [Google Scholar]
  7. Djeu J. Y., Blanchard D. K., Richards A. L., Freidman H. Tumor necrosis factor induction by Candida albicans from human natural killer cells and monocytes. J Immunol 1988; 141:4047–4052
    [Google Scholar]
  8. Beno D. W. A., Mathews H. L. Growth inhibition of Candida albicans by interleukin-2-induced lymph node cells. Cell Immunol 1990; 128:89–100
    [Google Scholar]
  9. Beno D. W. A., Stover A. G., Mathews H. L. Growth inhibition of Candida albicans hyphae by CD8+ lymphocytes. J Immunol 1995; 154:5273–5281
    [Google Scholar]
  10. Peace D. J., Kern D. E., Schultz K. R., Greenberg P. D., Cheever M. A. IL-4-induced lymphokines activate killer cells. Lytic activity is mediated by phenotypically distinct natural killer-like and T cell-like large granular lymphocytes. J Immunol 1988; 140:3679–3685
    [Google Scholar]
  11. Beno D. W. A., Mathews H. L. Quantitative measurement of lymphocyte mediated growth inhibition of Candida albicans. J Immunol Methods 1993; 164:155–164
    [Google Scholar]
  12. Arase H., Arase N., Nakagawa K., Good R. A., Onoe K. NK1.1+ CD4 + CD8 – thymocytes with specific lymphokine secretion. Eur J Immunol 1993; 23:307–310
    [Google Scholar]
  13. Chong A. S.-F., Ybarrondo B., Grimes W. J., Hersh E. M., Scuderi P. Phenotypic analyses of lymphokine-activated killer cells that release interferon (γ) and tumor necrosis factor (α). Cancer Immunol Immunother 1990; 31:255–259
    [Google Scholar]
  14. Kasahara T., Djeu J. Y., Dougherty S. F., Oppenheim J. J. Capacity of human large granular lympohcytes (LGL) to produce multiple lymphokines: interleukin 2, interferon, and colony stimulating factor. J Immunol 1983; 131:2379–2385
    [Google Scholar]
  15. Marquis G., Montplaisir S., Pelletier M., Mousseau S., Auger P. Strain-dependent differences in susceptibility of mice to experimental candidosis. J Infect Dis 1986; 154:906–909
    [Google Scholar]
  16. Kalo-Klein A., Witkin S. S. Prostaglandin E2 enhances and gamma interferon inhibits germ tube formation in Candida albicans. Infect Immun 1989; 58:260–262
    [Google Scholar]
  17. Djeu J. Cytokines and anti-fungal immunity. In Friedman H., Klein T. W., Yamaguch H. (eds) Microbial infections, role of biological response modifiers (Advances in experimental medicine and biology, vol 319.) New York: Plenum Press; 1992217–223
    [Google Scholar]
  18. Levitz S. M., North E. A. Gamma interferon gene expression and release in human lympohcytes directly activated by Cryptococcus neoformans and Candida albicans. Infect Immun 1996; 64:1595–1599
    [Google Scholar]
  19. Wang X., Fiscus R. R., Yang L., Mathews H. L. Suppression of the functional activity of IL-2 activated lymphocytes by CGRP. Cell Immunol 1995; 162:105–113
    [Google Scholar]
  20. Neta R., Salvin S. B. Resistance and susceptibility to infection in inbred murine strains. II. Variations in the effect of treatment with thymosin fraction 5 on the release of lymphokines in vivo. Cell Immunol 1983; 75:173–180
    [Google Scholar]
  21. Marconi P., Scargini L., Tissi L. Induction of natural killer cell activity by inactivated Candida albicans in mice. Infect Immun 1985; 50:297–303
    [Google Scholar]
  22. Scaringi L., Marconi P., Boccanera M., Tissi L., Bistoni F., Cassone A. Cell wall components of Candida albicans as immunomodulators: induction of natural killer and macrophage-mediated peritoneal cell cytotoxicity in mice by mannoprotein and glucan fractions. J Gen Microbiol 1988; 134:1265–1274
    [Google Scholar]
  23. Odds F. C. Pathogenesis of Candida infections. J Am Acad Dermatol 1994; 31:S2–5
    [Google Scholar]
  24. Lo H.-J., Kohler J. R., DiDomenico B., Loebenberg D., Cacciapuoti A., Fink G. R. Nonfilamentous C. albicans mutants are avirulent. Cell 1997; 90:939–949
    [Google Scholar]
  25. Fratti R. A., Ghannoum M. A., Edwards J. E., Filler S. G. Gamma interferon protects endothelial cells from damage by Candida albicans by inhibiting endothelial cell phagocytosis. Infect Immun 1996; 64:4714–4718
    [Google Scholar]
  26. Hidore M. R., Murphy J. W. Murine natural killer cell interactions with a fungal target, Cryptococcus neoformans. Infect Immun 1989; 57:1990–1997
    [Google Scholar]
  27. Levitz S. M., Dupont M. P. Phenotypic and functional characterization of human lymphocytes activated by interleukin-2 to directly inhibit growth of Cryptococcus neoformans in vitro. J Clin Invest 1993; 91:1490–1498
    [Google Scholar]
  28. Murphy J. W., Hidore M. R., Wong S. C. Direct interactions of human lymphocytes with the yeast-like organism, Cryptococcus neoformans. J Clin Invest 1993; 91:1553–1566
    [Google Scholar]
  29. Constans J., Ladner J., Dabis F. [CD8 hyperlymphocytosis in HIV infection; 63 cases. GECSA (Groupe d’Epidemiologie clinique du SIDA en Aquitaine).]. Presse Mede 1992; 21:27–30
    [Google Scholar]
  30. Warzynski M. J., Barbour S. D., Winkler-Pickett R. T., Ortaldo J. R. CD3+, CD56+ non-MHC restricted cytotoxic T lymphocytes in two fraternal AIDS patients: a case report. Cytometry 1994; 18:231–236
    [Google Scholar]
  31. Rosati E., Scaringi P., Comacchione P. Cytokine response to inactivated Candida albicans in mice. Cell Immunol 1995; 162:256–264
    [Google Scholar]
  32. Romani L., Mencacci A., Cenci E. Natural killer cells do not play a dominant role in CD4+ subset differentiation in Candida albicans-infected mice. Infect Immun 1993; 61:3769–3774
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/00222615-47-11-1007
Loading
/content/journal/jmm/10.1099/00222615-47-11-1007
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error