1887

Abstract

Tuberculosis (TB), an infectious disease caused by complex (MTC), remains one of the leading causes of death in the world. In Korea, the current prevalence of multidrug-resistant TB (MDR-TB) poses a major problem. The most common method for diagnosing TB in developing countries is sputum smear microscopy; however, the sensitivity of this test is relatively low and it usually requires well-trained laboratory staff. Cultures of MTC require up to several weeks in sophisticated facilities, such as Biosafety Level 3. Effective diagnostic techniques are necessary to control TB. In Korea, we evaluated a loop-mediated isothermal amplification (LAMP) assay targeting the gene (TB--LAMP) of MTC. For clinical evaluation, culture confirmation, smear microscopy and TB--LAMP were performed on 303 sputum specimens obtained from suspected TB patients in Korea. The sensitivity, specificity, positive predictive value and negative predictive value of TB--LAMP were 71.1, 98.8, 91.4 and 95.1 %, respectively, compared with TB culture, which is the gold standard for diagnosis of TB. In contrast, the comparable values of smear microscopy were 24.4, 98.1, 68.8 and 88.2 %, respectively. Therefore, we concluded that TB--LAMP was superior to the use of smear microscopy for the detection of MTC in sputum specimens in clinical settings in Korea.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000164
2015-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/11/1335.html?itemId=/content/journal/jmm/10.1099/jmm.0.000164&mimeType=html&fmt=ahah

References

  1. Aldous W. K., Pounder J. I., Cloud J. L., Woods G. L. 2005; Comparison of six methods of extracting Mycobacterium tuberculosis DNA from processed sputum for testing by quantitative real-time PCR. J Clin Microbiol 43:2471–2473 [View Article][PubMed]
    [Google Scholar]
  2. Amin I., Idrees M., Awan Z., Shahid M., Afzal S., Hussain A. 2011; PCR could be a method of choice for identification of both pulmonary and extra-pulmonary tuberculosis. BMC Res Notes 4:332 [View Article][PubMed]
    [Google Scholar]
  3. Aryan E., Makvandi M., Farajzadeh A., Huygen K., Bifani P., Mousavi S. L., Fateh A., Jelodar A., Gouya M. M., Romano M. 2010; A novel and more sensitive loop-mediated isothermal amplification assay targeting IS6110 for detection of Mycobacterium tuberculosis complex. Microbiol Res 165:211–220 [View Article][PubMed]
    [Google Scholar]
  4. Behr M. A., Wilson M. A., Gill W. P., Salamon H., Schoolnik G. K., Rane S., Small P. M. 1999; Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284:1520–1523 [View Article][PubMed]
    [Google Scholar]
  5. Bi A., Nakajima C., Fukushima Y., Tamaru A., Sugawara I., Kimura A., Kawahara R., Hu Z., Suzuki Y. 2012; A rapid loop-mediated isothermal amplification assay targeting hspX for the detection of Mycobacterium tuberculosis complex. Jpn J Infect Dis 65:247–251 [View Article][PubMed]
    [Google Scholar]
  6. Boehme C. C., Nabeta P., Henostroza G., Raqib R., Rahim Z., Gerhardt M., Sanga E., Hoelscher M., Notomi T., other authors. 2007; Operational feasibility of using loop-mediated isothermal amplification for diagnosis of pulmonary tuberculosis in microscopy centers of developing countries. J Clin Microbiol 45:1936–1940 [View Article][PubMed]
    [Google Scholar]
  7. Brodie D., Schluger N. W. 2005; The diagnosis of tuberculosis. Clin Chest Med 26:247–271 [View Article][PubMed]
    [Google Scholar]
  8. Brown L. D., Cai T. T., DasGupta A. 2001; Interval estimation for a binomial proportion. Stat Sci 16:101–133 (with Comments and Rejoinder). [View Article]
    [Google Scholar]
  9. CDC 2009; Updated guidelines for the use of nucleic acid amplification tests in the diagnosis of tuberculosis. MMWR Morb Mortal Wkly Rep 58:7–10[PubMed]
    [Google Scholar]
  10. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S., other authors. 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [View Article][PubMed]
    [Google Scholar]
  11. George G., Mony P., Kenneth J. 2011; Comparison of the efficacies of loop-mediated isothermal amplification, fluorescence smear microscopy and culture for the diagnosis of tuberculosis. PLoS One 6:e21007 [View Article][PubMed]
    [Google Scholar]
  12. Hänscheid T., Ribeiro C. M., Shapiro H. M., Perlmutter N. G. 2007; Fluorescence microscopy for tuberculosis diagnosis. Lancet Infect Dis 7:236–237 [View Article][PubMed]
    [Google Scholar]
  13. Hofmann-Thiel S., Turaev L., Hoffmann H. 2010; Evaluation of the hyplex TBC PCR test for detection of Mycobacterium tuberculosis complex in clinical samples. BMC Microbiol 10:95 [View Article][PubMed]
    [Google Scholar]
  14. Iwamoto T., Sonobe T., Hayashi K. 2003; Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples. J Clin Microbiol 41:2616–2622 [View Article][PubMed]
    [Google Scholar]
  15. Lee D., Kim E. J., Kilgore P. E., Kim S. A., Takahashi H., Ohnishi M., Anh D. D., Dong B. Q., Kim J. S., other authors. 2015; Clinical evaluation of a loop-mediated isothermal amplification (LAMP) assay for rapid detection of Neisseria meningitidis in cerebrospinal fluid. PLoS One 10:e0122922 [View Article][PubMed]
    [Google Scholar]
  16. Mitarai S., Okumura M., Toyota E., Yoshiyama T., Aono A., Sejimo A., Azuma Y., Sugahara K., Nagasawa T., other authors. 2011; Evaluation of a simple loop-mediated isothermal amplification test kit for the diagnosis of tuberculosis. Int J Tuberc Lung Dis 15:1211–1217 [View Article][PubMed]
    [Google Scholar]
  17. Miyamoto S., Sano S., Takahashi K., Jikihara T. 2015; Method for colorimetric detection of double-stranded nucleic acid using leuco triphenylmethane dyes. Anal Biochem 473:28–33 [View Article][PubMed]
    [Google Scholar]
  18. Mori Y., Notomi T. 2009; Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J Infect Chemother 15:62–69 [View Article][PubMed]
    [Google Scholar]
  19. Mori Y., Kitao M., Tomita N., Notomi T. 2004; Real-time turbidimetry of LAMP reaction for quantifying template DNA. J Biochem Biophys Methods 59:145–157 [View Article][PubMed]
    [Google Scholar]
  20. Notomi T., Okayama H., Masubuchi H., Yonekawa T., Watanabe K., Amino N., Hase T. 2000; Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:E63 [View Article][PubMed]
    [Google Scholar]
  21. Notomi T., Mori Y., Tomita N., Kanda H. 2015; Loop-mediated isothermal amplification (LAMP): principle, features, and future prospects. J Microbiol 53:1–5 [View Article][PubMed]
    [Google Scholar]
  22. Pandey B. D., Poudel A., Yoda T., Tamaru A., Oda N., Fukushima Y., Lekhak B., Risal B., Acharya B., other authors. 2008; Development of an in-house loop-mediated isothermal amplification (LAMP) assay for detection of Mycobacterium tuberculosis and evaluation in sputum samples of Nepalese patients. J Med Microbiol 57:439–443 [View Article][PubMed]
    [Google Scholar]
  23. Tomita N., Mori Y., Kanda H., Notomi T. 2008; Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc 3:877–882 [View Article][PubMed]
    [Google Scholar]
  24. WHO 2013a Global Tuberculosis Report 2013 Geneva: World Health Organization;
    [Google Scholar]
  25. WHO 2013b The Use of a Commercial Loop-Mediated Isothermal Amplification Assay (TB-LAMP) for the Detection of Tuberculosis [Expert Group Meeting Report] Geneva: World Health Organization;
    [Google Scholar]
  26. WHO 2014 Global Tuberculosis Report 2014 Geneva: World Health Organization;
    [Google Scholar]
  27. Wilson K. 2001; Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol 2:241–245
    [Google Scholar]
  28. Zhu R. Y., Zhang K. X., Zhao M. Q., Liu Y. H., Xu Y. Y., Ju C. M., Li B., Chen J. D. 2009; Use of visual loop-mediated isotheral amplification of rimM sequence for rapid detection of Mycobacterium tuberculosis and Mycobacterium bovis. J Microbiol Methods 78:339–343 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000164
Loading
/content/journal/jmm/10.1099/jmm.0.000164
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error