1887

Abstract

In the last 70 years, we have seen a radical change in our perception and understanding of the microbial world. During this period, we learned from Woese and Fox there exists a third kingdom called ‘Archea’ based on the phylogenetic studies of the 16S rRNA that revolutionized microbiology ( ). Furthermore, we were forced to reckon with the fact that Koch and Pasteur's way of growing cells in test-tubes or flasks planktonically does not necessarily translate to the real-life scenario of bacterial lifestyle, where they prefer to live and function as a closely knit microbial community called biofilm. Thanks are due to Costerton, who led the crusade on the concept of biofilms and expanded its scope of inquiry, which forced scientists and clinicians worldwide to rethink how we evaluate and apply the data. Then progressively, disbelief turned into belief, and now it is universally accepted that the micro-organisms hobnob with the members of their community to communicate and coordinate their behaviour, especially in regard to growth patterns and virulence traits via signalling molecules. Just when we thought that we were losing the battle against bacteria, antimicrobials were discovered. We then witnessed the rise and fall of antibiotics and the development of antibiotic resistance. Due to space and choice limitation, we will focus on the three areas that caused this major paradigm shift (i) antimicrobial resistance (AMR), (ii) biofilm and (iii) quorum sensing (QS), and how the played a major role in advancing the shift.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000186
2015-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmm/64/12/1457.html?itemId=/content/journal/jmm/10.1099/jmm.0.000186&mimeType=html&fmt=ahah

References

  1. Adam B., Baillie G. S., Douglas L. J. 2002; Mixed species biofilms of Candida albicans and Staphylococcus epidermidis . J Med Microbiol 51:344–349 [View Article][PubMed]
    [Google Scholar]
  2. Adonizio A., Leal S. M. Jr, Ausubel F. M., Mathee K. 2008; Attenuation of Pseudomonas aeruginosa virulence by medicinal plants in a Caenorhabditis elegans model system. J Med Microbiol 57:809–813 [View Article][PubMed]
    [Google Scholar]
  3. Amyes S. G. B. 1989; The success of plasmid-encoded resistance genes in clinical bacteria: an examination of plasmid-mediated ampicillin and trimethoprim resistance genes and their resistance mechanisms. J Med Microbiol 28:73–83 [View Article][PubMed]
    [Google Scholar]
  4. Anderson J. D., Gillespie W. A., Richmond M. H. 1973; Chemotherapy and antibiotic-resistance transfer between enterobacteria in the human gastro-intestinal tract. J Med Microbiol 6:461–473 [View Article][PubMed]
    [Google Scholar]
  5. Hafiz S., Oakley C. L. 1976; Clostridium difficile: isolation and characteristics. J Med Microbiol 9:129–136 [View Article][PubMed]
    [Google Scholar]
  6. Harris K. A., Hartley J. C. 2003; Development of broad-range 16S rDNA PCR for use in the routine diagnostic clinical microbiology service. J Med Microbiol 52:685–691 [View Article][PubMed]
    [Google Scholar]
  7. Hopkins M. J., Macfarlane G. T. 2002; Changes in predominant bacterial populations in human faeces with age and with Clostridium difficile infection. J Med Microbiol 51:448–454 [View Article][PubMed]
    [Google Scholar]
  8. Johnson A. P., Woodford N. 2013; Global spread of antibiotic resistance: the example of New Delhi metallo-β-lactamase (NDM)-mediated carbapenem resistance. J Med Microbiol 62:499–513 [View Article][PubMed]
    [Google Scholar]
  9. Makimura K., Murayama S. Y., Yamaguchi H. 1994; Detection of a wide range of medically important fungi by the polymerase chain reaction. J Med Microbiol 40:358–364 [View Article][PubMed]
    [Google Scholar]
  10. Nostro A., Sudano Roccaro A., Bisignano G., Marino A., Cannatelli M. A., Pizzimenti F. C., Cioni P. L., Procopio F., Blanco A. R. 2007; Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med Microbiol 56:519–523 [View Article][PubMed]
    [Google Scholar]
  11. Parks Q. M., Young R. L., Poch K. R., Malcolm K. C., Vasil M. L., Nick J. A. 2009; Neutrophil enhancement of Pseudomonas aeruginosa biofilm development: human F-actin and DNA as targets for therapy. J Med Microbiol 58:492–502 [View Article][PubMed]
    [Google Scholar]
  12. Payne D. J. 1993; Metallo-β-lactamases – a new therapeutic challenge. J Med Microbiol 39:93–99 [View Article][PubMed]
    [Google Scholar]
  13. Schaber J. A., Hammond A., Carty N. L., Williams S. C., Colmer-Hamood J. A., Burrowes B. H., Dhevan V., Griswold J. A., Hamood A. N. 2007; Diversity of biofilms produced by quorum-sensing-deficient clinical isolates of Pseudomonas aeruginosa . J Med Microbiol 56:738–748 [View Article][PubMed]
    [Google Scholar]
  14. Stapper A. P., Narasimhan G., Ohman D. E., Barakat J., Hentzer M., Molin S., Kharazmi A., Høiby N., Mathee K. 2004; Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. J Med Microbiol 53:679–690 [View Article][PubMed]
    [Google Scholar]
  15. Wilson M. 1996; Susceptibility of oral bacterial biofilms to antimicrobial agents. J Med Microbiol 44:79–87 [View Article][PubMed]
    [Google Scholar]
  16. Abraham E. P., Chain E. 1940; An enzyme from bacteria able to destroy penicillin. Nature 146:837 [View Article]
    [Google Scholar]
  17. Adonizio A. L., Downum K., Bennett B. C., Mathee K. 2006; Anti-quorum sensing activity of medicinal plants in southern Florida. J Ethnopharmacol 105:427–435 [View Article][PubMed]
    [Google Scholar]
  18. Al-Fattani M. A., Douglas L. J. 2006; Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol 55:999–1008 [View Article][PubMed]
    [Google Scholar]
  19. Britton R. A., Young V. B. 2014; Role of the intestinal microbiota in resistance to colonization by Clostridium difficile . Gastroenterology 146:1547–1553 [View Article][PubMed]
    [Google Scholar]
  20. Costerton J. W., Cheng K. J., Geesey G. G., Ladd T. I., Nickel J. C., Dasgupta M., Marrie T. J. 1987; Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464 [View Article][PubMed]
    [Google Scholar]
  21. Davies D. G., Parsek M. R., Pearson J. P., Iglewski B. H., Costerton J. W., Greenberg E. P. 1998; The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298 [CrossRef]
    [Google Scholar]
  22. Davies J. 1994; Inactivation of antibiotics and the dissemination of resistance genes. Science 264:375–382 [View Article][PubMed]
    [Google Scholar]
  23. Davies J., Davies D. 2010; Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433 [View Article][PubMed]
    [Google Scholar]
  24. Fernandez, M., Riveros, J. D., Campos, M., Mathee, K. & Narasimhan, G. 2015; Microbial “social networks”. BMC Genomics 16:(Suppl. 11)S6
    [Google Scholar]
  25. Greenberg E. P. 2003; Bacterial communication and group behavior. J Clin Invest 112:1288–1290 [View Article][PubMed]
    [Google Scholar]
  26. Hall I. C., O'Toole E. 1935; Intestinal flora in new-born infants with a description of a new pathogenic anaerobe, Bacillus difficilis . Am J Dis Child 49:390–402 [View Article]
    [Google Scholar]
  27. Høiby N., Giwercman B., Jensen E. T., Johansen H. K., Kronborg G., Pressler T., Kharazmi A. 1993; Immune response in cystic fibrosis: helpful or harmful?. In Clinical Ecology of Cystic Fibrosis pp. 133–141 Edited by Escobar H., Baquero C. F., Suarez L. Amsterdam: Exerpta Medica;
    [Google Scholar]
  28. Jaric M., Segal J., Silva-Herzog E., Schneper L., Mathee K., Narasimhan G. 2013; Better primer design for metagenomics applications by increasing taxonomic distinguishability. BMC Proc 7:Suppl. 7S4 [View Article][PubMed]
    [Google Scholar]
  29. Jennings L. K., Storek K. M., Ledvina H. E., Coulon C., Marmont L. S., Sadovskaya I., Secor P. R., Tseng B. S., Scian M., other authors. 2015; Pel is a cationic exopolysaccharide that cross-links extracellular DNA in the Pseudomonas aeruginosa biofilm matrix. Proc Natl Acad Sci U S A 112:11353–11358 [View Article][PubMed]
    [Google Scholar]
  30. Kelly C. P., LaMont J. T. 2008; Clostridium difficile – more difficult than ever. N Engl J Med 359:1932–1940 [View Article][PubMed]
    [Google Scholar]
  31. Knecht H., Neulinger S. C., Heinsen F. A., Knecht C., Schilhabel A., Schmitz R. A., Zimmermann A., dos Santos V. M., Ferrer M., other authors. 2014; Effects of β-lactam antibiotics and fluoroquinolones on human gut microbiota in relation to Clostridium difficile associated diarrhea. PLoS One 9:e89417 [View Article][PubMed]
    [Google Scholar]
  32. Lappin-Scott H., Burton S., Stoodley P. 2014; Revealing a world of biofilms – the pioneering research of Bill Costerton. Nat Rev Microbiol 12:781–787 [View Article][PubMed]
    [Google Scholar]
  33. Larson H. E., Welch A. 1993; In-vitro and in-vivo characterisation of resistance to colonisation with Clostridium difficile . J Med Microbiol 38:103–108 [View Article][PubMed]
    [Google Scholar]
  34. Larson H. E., Price A. B., Honour P., Borriello S. P. 1978; Clostridium difficile and the aetiology of pseudomembranous colitis. Lancet 1:1063–1066 [View Article][PubMed]
    [Google Scholar]
  35. Ma L., Wang S., Wang D., Parsek M. R., Wozniak D. J. 2012; The roles of biofilm matrix polysaccharide Psl in mucoid Pseudomonas aeruginosa biofilms. FEMS Immunol Med Microbiol 65:377–380 [View Article][PubMed]
    [Google Scholar]
  36. Manefield M., de Nys R., Kumar N., Read R., Givskov M., Steinberg P., Kjelleberg S. 1999; Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145:283–291 [View Article][PubMed]
    [Google Scholar]
  37. Masseret E., Boudeau J., Colombel J. F., Neut C., Desreumaux P., Joly B., Cortot A., Darfeuille-Michaud A. 2001; Genetically related Escherichia coli strains associated with Crohn's disease. Gut 48:320–325 [View Article][PubMed]
    [Google Scholar]
  38. Mathee K., Ciofu O., Sternberg C., Lindum P. W., Campbell J. I., Jensen P., Johnsen A. H., Givskov M., Ohman D. E., other authors. 1999; Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 145:1349–1357 [View Article][PubMed]
    [Google Scholar]
  39. Nealson K. H., Hastings J. W. 1979; Bacterial bioluminescence: its control and ecological significance. Microbiol Rev 43:496–518[PubMed]
    [Google Scholar]
  40. Oliver A., Cantón R., Campo P., Baquero F., Blázquez J. 2000; High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:1251–1253 [View Article][PubMed]
    [Google Scholar]
  41. Schneper L., Maricic N., Mathee K. 2011; Anti-quorum sensing, anti-bacterial, and immunomodulatory properties of Panax ginseng . Intl J Biomed Pharma Sci 6:11–24
    [Google Scholar]
  42. Silver L. L. 2007; Multi-targeting by monotherapeutic antibacterials. Nat Rev Drug Discov 6:41–55 [View Article][PubMed]
    [Google Scholar]
  43. Silver L. L. 2011; Challenges of antibacterial discovery. Clin Microbiol Rev 24:71–109 [View Article][PubMed]
    [Google Scholar]
  44. Smith R. S., Iglewski B. H. 2003; P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6:56–60 [View Article][PubMed]
    [Google Scholar]
  45. Song Z., Wu H., Ciofu O., Kong K. F., Høiby N., Rygaard J., Kharazmi A., Mathee K. 2003; Pseudomonas aeruginosa alginate is refractory to Th1 immune response and impedes host immune clearance in a mouse model of acute lung infection. J Med Microbiol 52:731–740 [View Article][PubMed]
    [Google Scholar]
  46. Sriramulu D. D., Lünsdorf H., Lam J. S., Römling U. 2005; Microcolony formation: a novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. J Med Microbiol 54:667–676 [View Article][PubMed]
    [Google Scholar]
  47. Stephen A. M., Cummings J. H. 1980; The microbial contribution to human faecal mass. J Med Microbiol 13:45–56 [View Article][PubMed]
    [Google Scholar]
  48. Strateva T., Yordanov D. 2009; Pseudomonas aeruginosa – a phenomenon of bacterial resistance. J Med Microbiol 58:1133–1148 [View Article][PubMed]
    [Google Scholar]
  49. Theriot C. M., Koenigsknecht M. J., Carlson P. E. Jr, Hatton G. E., Nelson A. M., Li B., Huffnagle G. B., Li J. Z., Young V. B. 2014; Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun 5:3114 [View Article][PubMed]
    [Google Scholar]
  50. Turnbaugh P. J., Ley R. E., Hamady M., Fraser-Liggett C. M., Knight R., Gordon J. I. 2007; The human microbiome project. Nature 449:804–810 [View Article][PubMed]
    [Google Scholar]
  51. Wang M., Schaefer A. L., Dandekar A. A., Greenberg E. P. 2015; Quorum sensing and policing of Pseudomonas aeruginosa social cheaters. Proc Natl Acad Sci U S A 112:2187–2191 [View Article][PubMed]
    [Google Scholar]
  52. Williams P. 2007; Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153:3923–3938 [View Article][PubMed]
    [Google Scholar]
  53. Woese C. R., Fox G. E. 1977; Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088–5090 [View Article][PubMed]
    [Google Scholar]
  54. Woese C. R., Magrum L. J., Fox G. E. 1978; Archaebacteria. J Mol Evol 11:245–252 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000186
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error