1887

Abstract

Tuberculosis (TB), caused by members of the complex (MTC), is the leading cause of infectious disease-related mortality worldwide. The standard method for TB diagnosis usually requires long periods of mycobacteria cultivation, leading to delayed diagnosis, inefficient treatment and widespread occurrence of the disease. Therefore, a rapid method for the detection and differentiation of MTC from other mycobacteria is essential for disease diagnosis. Here, we describe the potential of using the type I signal peptidase () gene as a novel target for TB diagnosis, based on confronting two-pair primers PCR (PCR-CTPP) that can detect MTC and simultaneously differentiate . The limit of detection of the developed technique was equivalent to 12–120 bacilli. PCR-CTPP was highly specific to only MTC and and no cross-reaction was detected in 27 DNA of the non-tuberculous mycobacterial and bacterial strains tested. Thirty-nine blinded clinical isolates and 72 sputum samples were used to validate the PCR-CTPP in comparison with the standard mycobacterial culture method. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of PCR-CTPP were equal to 95, 100, 100 and 95 %, respectively, when tested with clinical isolates. Furthermore, upon testing with the sputum samples, the sensitivity, specificity, PPV and NPV were observed to be 84, 76, 90 and 67 %, respectively. Hence, this highly sensitive novel technique, which is rapid, easy to conduct and cost-effective, is a potential method for TB diagnosis and epidemiological studies, especially in resource-limited countries with a high TB burden.

Loading

Article metrics loading...

/content/journal/jmm/10.1099/jmm.0.000188
2016-01-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jmm/65/1/36.html?itemId=/content/journal/jmm/10.1099/jmm.0.000188&mimeType=html&fmt=ahah

References

  1. Altshuler M. L. 2006 PCR troubleshooting: The essential guide Norfolk: Caister Academic Press UK;
    [Google Scholar]
  2. Bakshi C. S., Shah D. H., Verma R., Singh R. K., Malik M. 2005; Rapid differentiation of Mycobacterium bovis and Mycobacterium tuberculosis based on a 12.7-kb fragment by a single tube multiplex-PCR. Vet Microbiol 109:211–216 [View Article][PubMed]
    [Google Scholar]
  3. Cousins D. V., Bastida R., Cataldi A., Quse V., Redrobe S., Dow S., Duignan P., Murray A., Dupont C., other authors. 2003; Tuberculosis in seals caused by a novel member of the Mycobacterium tuberculosis complex: Mycobacterium pinnipedii sp. nov. Int J Syst Evol Microbiol 53:1305–1314 [View Article][PubMed]
    [Google Scholar]
  4. de Kantor I. N., LoBue P. A., Thoen C. O. 2010; Human tuberculosis caused by Mycobacterium bovis in the United States, Latin America and the Caribbean. Int J Tuberc Lung Dis 14:1369–1373[PubMed]
    [Google Scholar]
  5. Dziadek J., Sajduda A., Boruń T. M. 2001; Specificity of insertion sequence-based PCR assays for Mycobacterium tuberculosis complex. Int J Tuberc Lung Dis 5:569–574[PubMed]
    [Google Scholar]
  6. Glassroth J. 2008; Pulmonary disease due to nontuberculous mycobacteria. Chest 133:243–251 [View Article][PubMed]
    [Google Scholar]
  7. Hamajima N., Saito T., Matsuo K., Kozaki K., Takahashi T., Tajima K. 2000; Polymerase chain reaction with confronting two-pair primers for polymorphism genotyping. Jpn J Cancer Res 91:865–868 [View Article][PubMed]
    [Google Scholar]
  8. Hamajima N., Matsuo K., Saito T., Tajima K., Okuma K., Yamao K., Tominaga S. 2001; Interleukin 1 polymorphisms, lifestyle factors, and Helicobacter pylori infection. Jpn J Cancer Res 92:383–389 [View Article][PubMed]
    [Google Scholar]
  9. Heller L. C., Jones M., Widen R. H. 2008; Comparison of DNA pyrosequencing with alternative methods for identification of mycobacteria. J Clin Microbiol 46:2092–2094 [View Article][PubMed]
    [Google Scholar]
  10. Hong Y. J., Chung Y. H., Kim T. S., Song S. H., Park K. U., Yim J. J., Song J., Lee J. H., Kim E. C. 2011; Usefulness of three-channel multiplex real-time PCR and melting curve analysis for simultaneous detection and identification of the Mycobacterium tuberculosis complex and nontuberculous mycobacteria. J Clin Microbiol 49:3963–3966 [View Article][PubMed]
    [Google Scholar]
  11. Intorasoot S., Thongpung R., Tragoolpua K., Chottayaporn M. 2008; Hemoglobin E detection using PCR with confronting two-pair primers. J Med Assoc Thai 91:1677–1680[PubMed]
    [Google Scholar]
  12. Jonas V., Alden M. J., Curry J. I., Kamisango K., Knott C. A., Lankford R., Wolfe J. M., Moore D. F. 1993; Detection and identification of Mycobacterium tuberculosis directly from sputum sediments by amplification of rRNA. J Clin Microbiol 31:2410–2416[PubMed]
    [Google Scholar]
  13. Kawai S., Nishio K., Nakamura S., Sekido Y., Niwa T., Hamajima N. 2005; Multiplex PCR with confronting two-pair primers for CYP1A1 Ile462Val, GSTM1, GSTT1, and NQO1 C609T. Asian Pac J Cancer Prev 6:346–352[PubMed]
    [Google Scholar]
  14. Khatri I. A., Bhaskar K. R., Lamont J. T., Sajjan S. U., Ho C. K., Forstner J. 2003; Effect of chondroitinase ABC on purulent sputum from cystic fibrosis and other patients. Pediatr Res 53:619–627 [View Article][PubMed]
    [Google Scholar]
  15. Koh W. J., Yu C. M., Suh G. Y., Chung M. P., Kim H., Kwon O. J., Lee N. Y., Chung M. J., Lee K. S. 2006; Pulmonary TB and NTM lung disease: comparison of characteristics in patients with AFB smear-positive sputum. Int J Tuberc Lung Dis 10:1001–1007[PubMed]
    [Google Scholar]
  16. Konno K., Feldmann F. M., McDermott W. 1967; Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am Rev Respir Dis 95:461–469[PubMed]
    [Google Scholar]
  17. Lebrun L., Mathieu D., Saulnier C., Nordmann P. 1997; Limits of commercial molecular tests for diagnosis of pulmonary tuberculosis. Eur Respir J 10:1874–1876 [View Article][PubMed]
    [Google Scholar]
  18. Li Q. W., Lu C. R., Ye M., Xiao W. H., Liang J. 2012; Evaluation of DNA repair gene XRCC1 polymorphism in prediction and prognosis of hepatocellular carcinoma risk. Asian Pac J Cancer Prev 13:191–194 [View Article][PubMed]
    [Google Scholar]
  19. Müller B., Dürr S., Alonso S., Hattendorf J., Laisse C. J., Parsons S. D., van Helden P. D., Zinsstag J. 2013; Zoonotic Mycobacterium bovis-induced tuberculosis in humans. Emerg Infect Dis 19:899–908 [View Article][PubMed]
    [Google Scholar]
  20. Nghiem M. N., Nguyen B. V., Nguyen S. T., Vo T. T., Nong H. V. 2015; A simple, single triplex PCR of IS6110, IS1081 and 23S ribosomal DNA targets, developed for rapid detection and discrimination of mycobacterium from clinical samples. J Microbiol Biotechnol 25:745–752[PubMed]
    [Google Scholar]
  21. Ollinger J., O'Malley T., Ahn J., Odingo J., Parish T. 2012; Inhibition of the sole type I signal peptidase of Mycobacterium tuberculosis is bactericidal under replicating and nonreplicating conditions. J Bacteriol 194:2614–2619 [View Article][PubMed]
    [Google Scholar]
  22. Padilla E., González V., Manterola J. M., Pérez A., Quesada M. D., Gordillo S., Vilaplana C., Pallarés M. A., Molinos S., other authors. 2004; Comparative evaluation of the new version of the INNO-LiPA Mycobacteria and genotype Mycobacterium assays for identification of Mycobacterium species from MB/BacT liquid cultures artificially inoculated with Mycobacterial strains. J Clin Microbiol 42:3083–3088 [View Article][PubMed]
    [Google Scholar]
  23. Paetzel M., Dalbey R. E., Strynadka N. C. 2000; The structure and mechanism of bacterial type I signal peptidases. A novel antibiotic target. Pharmacol Ther 87:27–49 [View Article][PubMed]
    [Google Scholar]
  24. Pao C. C., Yen T. S., You J. B., Maa J. S., Fiss E. H., Chang C. H. 1990; Detection and identification of Mycobacterium tuberculosis by DNA amplification. J Clin Microbiol 28:1877–1880[PubMed]
    [Google Scholar]
  25. Plikaytis B. B., Plikaytis B. D., Yakrus M. A., Butler W. R., Woodley C. L., Silcox V. A., Shinnick T. M. 1992; Differentiation of slowly growing Mycobacterium species, including Mycobacterium tuberculosis, by gene amplification and restriction fragment length polymorphism analysis. J Clin Microbiol 30:1815–1822[PubMed]
    [Google Scholar]
  26. Ryoo S. W., Shin S., Shim M. S., Park Y. S., Lew W. J., Park S. N., Park Y. K., Kang S. 2008; Spread of nontuberculous mycobacteria from 1993 to 2006 in Koreans. J Clin Lab Anal 22:415–420 [View Article][PubMed]
    [Google Scholar]
  27. Sansila A., Hongmanee P., Chuchottaworn C., Rienthong S., Rienthong D., Palittapongarnpim P. 1998; Differentiation between Mycobacterium tuberculosis and Mycobacterium avium by amplification of the 16S-23S ribosomal DNA spacer. J Clin Microbiol 36:2399–2403[PubMed]
    [Google Scholar]
  28. Shah D. H., Verma R., Bakshi C. S., Singh R. K. 2002; A multiplex-PCR for the differentiation of Mycobacterium bovis and Mycobacterium tuberculosis . FEMS Microbiol Lett 214:39–43 [View Article][PubMed]
    [Google Scholar]
  29. Takewaki S., Okuzumi K., Ishiko H., Nakahara K., Ohkubo A., Nagai R. 1993; Genus-specific polymerase chain reaction for the mycobacterial dnaJ gene and species-specific oligonucleotide probes. J Clin Microbiol 31:446–450[PubMed]
    [Google Scholar]
  30. Vignesh R., Balakrishnan P., Shankar E. M., Murugavel K. G., Hanas S., Cecelia A. J., Solomon S., Kumarasamy N. 2007; Value of single acid-fast bacilli sputum smears in the diagnosis of tuberculosis in HIV-positive subjects. J Med Microbiol 56:1709–1710 [View Article][PubMed]
    [Google Scholar]
  31. Weiss C. H., Glassroth J. 2012; Pulmonary disease caused by nontuberculous mycobacteria. Expert Rev Respir Med 6:597–613 [View Article][PubMed]
    [Google Scholar]
  32. WHO 2014 Global tuberculosis report 2013 Geneva, Switzerland: World Health Organization;
    [Google Scholar]
  33. Wood R. C., Luabeya A. K., Weigel K. M., Wilbur A. K., Jones-Engel L., Hatherill M., Cangelosi G. A. 2015; Detection of Mycobacterium tuberculosis DNA on the oral mucosa of tuberculosis patients. Sci Rep 5:8668 [View Article][PubMed]
    [Google Scholar]
  34. Zhang Y., Permar S., Sun Z. 2002; Conditions that may affect the results of susceptibility testing of Mycobacterium tuberculosis to pyrazinamide. J Med Microbiol 51:42–49 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jmm/10.1099/jmm.0.000188
Loading
/content/journal/jmm/10.1099/jmm.0.000188
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error