
f Nisin is an effective inhibitor of Clostridium difficile vegetative cells and spore germination
- Authors: Christophe Le Lay1,2,3 , Larbi Dridi2,3 , Michel G. Bergeron2,3 , Marc Ouellette2,3 , Ismaı¨l Fliss1
-
- VIEW AFFILIATIONS
-
1 1STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, Québec City, QC, Canada 2 2Centre de recherche en infectiologie de l'Université Laval, Axe Maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec, Québec City, QC, Canada 3 3Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec City, QC, Canada
- Correspondence Ismaı¨l Fliss [email protected]
- First Published Online: 01 February 2016, Journal of Medical Microbiology 65: 169-175, doi: 10.1099/jmm.0.000202
- Subject: Prevention and Therapy
- Received:
- Accepted:
- Cover date:




Nisin is an effective inhibitor of Clostridium difficile vegetative cells and spore germination, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/jmm/65/2/169_jmm000202-1.gif
-
Clostridium difficile is the most frequently identified enteric pathogen in patients with nosocomial antibiotic-associated diarrhoea and pseudomembranous colitis. Several clinically isolated C. difficile strains are resistant to antibiotics other than metronidazole and vancomycin. Recently, bacteriocins of lactic acid bacteria have been proposed as an alternative or complementary treatment. The aim of this study was to investigate the inhibitory effect of nisin, a bacteriocin produced by several strains of Lactococcus lactis, against clinical isolates of C. difficile. Nisin Z obtained from culture of L. lactis subsp. lactis biovar. diacetylactis was tested along with commercial nisin A. The effect of nisin A on C. difficile spores was also examined. Nisin A and Z both inhibited the growth of all C. difficile isolates, and MICs were estimated at 6.2 μg ml− 1 for nisin Z and 0.8 μg ml− 1 for nisin A. In addition, C. difficile spores were also susceptible to nisin A (25.6 μg ml− 1), which reduced spore viability by 40–50 %. These results suggested that nisin and hence nisin-producing Lactococcus strains could be used to treat C. difficile-associated diarrhoea.
-
Abbreviations: CLSI Clinical and Laboratory Standards Institute GRAS generally recognized as safe.
© 2015 The Authors | Published by the Microbiology Society
-
Abriouel H., Maqueda M., Gálvez A., Martínez-Bueno M., Valdivia E.. ( 2002;). Inhibition of bacterial growth, enterotoxin production, and spore outgrowth in strains of Bacillus cereus by bacteriocin AS-48. Appl Environ Microbiol 68: 1473––1477 [CrossRef] [PubMed].
-
Ali D., Lacroix C., Simard R. E., Thuault D., Bourgeois C. M.. ( 1995;). Characterization of diacetin B, a bacteriocin from Lactococcus lactis subsp. lactis bv. diacetylactis UL720. Can J Microbiol 41: 832––841 [CrossRef] [PubMed].
-
Aslam S., Hamill R. J., Musher D. M.. ( 2005;). Treatment of Clostridium difficile-associated disease: old therapies and new strategies. Lancet Infect Dis 5: 549––557 [CrossRef] [PubMed].
-
Ávila M., Gómez-Torres N., Hernández M., Garde S.. ( 2014;). Inhibitory activity of reuterin, nisin, lysozyme and nitrite against vegetative cells and spores of dairy-related Clostridium species. Int J Food Microbiol 172: 70––75 [CrossRef] [PubMed].
-
Baines S. D., O'Connor R., Freeman J., Fawley W. N., Harmanus C., Mastrantonio P., Kuijper E. J., Wilcox M. H.. ( 2008;). Emergence of reduced susceptibility to metronidazole in Clostridium difficile. J Antimicrob Chemother 62: 1046––1052 [CrossRef] [PubMed].
-
Bartoloni A., Mantella A., Goldstein B. P., Dei R., Benedetti M., Sbaragli S., Paradisi F.. ( 2004;). In-vitro activity of nisin against clinical isolates of Clostridium difficile. J Chemother 16: 119––121 [CrossRef] [PubMed].
-
Bouksaim M., Fliss I., Meghrous J., Simard R., Lacroix C.. ( 1998;). Immunodot detection of nisin Z in milk and whey using enhanced chemiluminescence. J Appl Microbiol 84: 176––184 [CrossRef] [PubMed].
-
Breukink E., de Kruijff B.. ( 1999;). The lantibiotic nisin, a special case or not?. Biochim Biophys 1462: 223––234 [CrossRef].
-
CLSI ( 2007;). Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved Standard, 7th edn., Document M11-A7 Wayne, PA: Clinical and Laboratory Standards Institute;.
-
Drider D., Rebuffat S.. ( 2011;). Prokaryotic Antimicrobial Peptides: From Genes to Applications Dordrecht: Springer;.[CrossRef]
-
Drummond L. J., McCoubrey J., Smith D. G. E., Starr J. M., Poxton I. R.. ( 2003;). Changes in sensitivity patterns to selected antibiotics in Clostridium difficile in geriatric in-patients over an 18-month period. J Med Microbiol 52: 259––263 [CrossRef] [PubMed].
-
Field D., Quigley L., O'Connor P. M., Rea M. C., Daly K., Cotter P. D., Hill C., Ross R. P.. ( 2010;). Studies with bioengineered Nisin peptides highlight the broad-spectrum potency of Nisin V. Microb Biotechnol 3: 473––486 [CrossRef] [PubMed].
-
Gut I. M., Prouty A. M., Ballard J. D., van der Donk W. A., Blanke S. R.. ( 2008;). Inhibition of Bacillus anthracis spore outgrowth by nisin. Antimicrob Agents Chemother 52: 4281––4288 [CrossRef] [PubMed].
-
Gut I. M., Blanke S. R., van der Donk W. A.. ( 2011;). Mechanism of inhibition of Bacillus anthracis spore outgrowth by the lantibiotic nisin. ACS Chem Biol 6: 744––752 [CrossRef] [PubMed].
-
Hammami R., Fernandez B., Lacroix C., Fliss I.. ( 2013;). Anti-infective properties of bacteriocins: an update. Cell Mol Life Sci 70: 2947––2967 [CrossRef] [PubMed].
-
Kelly C. P., LaMont J. T.. ( 2008;). Clostridium difficile – more difficult than ever. N Engl J Med 359: 1932––1940 [CrossRef] [PubMed].
-
Lakshminarayanan B., Guinane C. M., O'Connor P. M., Coakley M., Hill C., Stanton C., O'Toole P. W., Ross R. P.. ( 2013;). Isolation and characterization of bacteriocin-producing bacteria from the intestinal microbiota of elderly Irish subjects. J Appl Microbiol 114: 886––898 [CrossRef] [PubMed].
-
Le Blay G., Lacroix C., Zihler A., Fliss I.. ( 2007;). In vitro inhibition activity of nisin A, nisin Z, pediocin PA-1 and antibiotics against common intestinal bacteria. Lett Appl Microbiol 45: 252––257 [CrossRef] [PubMed].
-
Le Lay C., Akerey B., Fliss I., Subirade M., Rouabhia M.. ( 2008;). Nisin Z inhibits the growth of Candida albicans and its transition from blastospore to hyphal form. J Appl Microbiol 105: 1630––1639 [CrossRef] [PubMed].
-
Martinez-Cuesta M. C., Bengoechea J., Bustos I., Rodriguez B., Requena T., Pelaez C.. ( 2010;). Control of late blowing in cheese by adding lacticin 3147-producing Lactococcus lactis IFPL 3593 to the starter. Int Dairy J 20: 18––24 [CrossRef].
-
Mathur H., O'Connor P. M., Hill C., Cotter P. D., Ross R. P.. ( 2013;). Analysis of anti-Clostridium difficile activity of thuricin CD, vancomycin, metronidazole, ramoplanin, and actagardine, both singly and in paired combinations. Antimicrob Agents Chemother 57: 2882––2886 [CrossRef] [PubMed].
-
McAuliffe O., Ryan M. P., Ross R. P., Hill C., Breeuwer P., Abee T.. ( 1998;). Lacticin 3147, a broad-spectrum bacteriocin which selectively dissipates the membrane potential. Appl Environ Microbiol 64: 439––445 [PubMed].
-
Meghrous J., Lacroix C., Bouksaı¨m M., LaPointe G., Simard R. E.. ( 1997;). Note: genetic and biochemical characterization on nisin Z produced by Lactococcus lactis ssp. lactis biovar. diacetylactis UL 719. J Appl Microbiol 83: 133––138 [CrossRef] [PubMed].
-
Mota-Meira M., LaPointe G., Lacroix C., Lavoie M. C.. ( 2000;). MICs of mutacin B-Ny266, nisin A, vancomycin, and oxacillin against bacterial pathogens. Antimicrob Agents Chemother 44: 24––29 [CrossRef] [PubMed].
-
Mulders J. W. M., Boerrigter I. J., Rollema H. S., Siezen R. J., de Vos W. M.. ( 1991;). Identification and characterization of the lantibiotic nisin Z, a natural nisin variant. Eur J Biochem 201: 581––584 [CrossRef] [PubMed].
-
Mutlu E., Wroe A. J., Sanchez-Hurtado K., Brazier J. S., Poxton I. R.. ( 2007;). Molecular characterization and antimicrobial susceptibility patterns of Clostridium difficile strains isolated from hospitals in south-east Scotland. J Med Microbiol 56: 921––929 [CrossRef] [PubMed].
-
Nerandzic M. M., Donskey C. J.. ( 2013;). Activate to eradicate: inhibition of Clostridium difficile spore outgrowth by the synergistic effects of osmotic activation and nisin. PLoS One 8: e54740 [CrossRef] [PubMed].
-
Paredes-Sabja D., Bond C., Carman R. J., Setlow P., Sarker M. R.. ( 2008;). Germination of spores of Clostridium difficile strains, including isolates from a hospital outbreak of Clostridium difficile-associated disease (CDAD). Microbiology 154: 2241––2250 [CrossRef] [PubMed].
-
Peláez T., Cercenado E., Alcalá L., Marín M., Martín-López A., Martínez-Alarcón J., Catalán P., Sánchez-Somolinos M., Bouza E.. ( 2008;). Metronidazole resistance in Clostridium difficile is heterogeneous. J Clin Microbiol 46: 3028––3032 [CrossRef] [PubMed].
-
Pol I. E., van Arendonk W. G. C., Mastwijk H. C., Krommer J., Smid E. J., Moezelaar R.. ( 2001;). Sensitivities of germinating spores and carvacrol-adapted vegetative cells and spores of Bacillus cereus to nisin and pulsed-electric-field treatment. Appl Environ Microbiol 67: 1693––1699 [CrossRef] [PubMed].
-
Rea M. C., Clayton E., O'Connor P. M., Shanahan F., Kiely B., Ross R. P., Hill C.. ( 2007;). Antimicrobial activity of lacticin 3147 against clinical Clostridium difficile strains. J Med Microbiol 56: 940––946 [CrossRef] [PubMed].
-
Rea M. C., Sit C. S., Clayton E., O'Connor P. M., Whittal R. M., Zheng J., Vederas J. C., Ross R. P., Hill C.. ( 2010;). Thuricin CD, a post-translationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc Natl Acad Sci U S A 107: 9352––9357 [CrossRef] [PubMed].
-
Ruhr E., Sahl H. G.. ( 1985;). Mode of action of the peptide antibiotic nisin and influence on the membrane potential of whole cells and on cytoplasmic and artificial membrane vesicles. Antimicrob Agents Chemother 27: 841––845 [CrossRef] [PubMed].
-
Rupnik M., Wilcox M. H., Gerding D. N.. ( 2009;). Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol 7: 526––536 [CrossRef] [PubMed].
-
Slimings C., Riley T. V.. ( 2014;). Antibiotics and hospital-acquired Clostridium difficile infection: update of systematic review and meta-analysis. J Antimicrob Chemother 69: 881––891 [CrossRef] [PubMed].
-
Sorg J. A., Sonenshein A. L.. ( 2008;). Bile salts and glycine as cogerminants for Clostridium difficile spores. J Bacteriol 190: 2505––2512 [CrossRef] [PubMed].
-
Stanley J. D., Bartlett J. G., Dart B.W., IV, Ashcraft J. H.. ( 2013;). Clostridium difficile infection. Curr Probl Surg 50: 302––337 [CrossRef] [PubMed].
-
Stevens V., Dumyati G., Fine L. S., Fisher S. G., van Wijngaarden E.. ( 2011;). Cumulative antibiotic exposures over time and the risk of Clostridium difficile infection. Clin Infect Dis 53: 42––48 [CrossRef] [PubMed].
-
Surawicz C. M., Brandt L. J., Binion D. G., Ananthakrishnan A. N., Curry S. R., Gilligan P. H., McFarland L. V., Mellow M., Zuckerbraun B. S.. ( 2013;). Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol 108: 478––498 quiz 499 [CrossRef] [PubMed].
-
Tagg J. R., Dajani A. S., Wannamaker L. W.. ( 1976;). Bacteriocins of gram-positive bacteria. Bacteriol Rev 40: 722––756 [PubMed].
-
Tannock G. W., Munro K., Taylor C., Lawley B., Young W., Byrne B., Emery J., Louie T.. ( 2010;). A new macrocyclic antibiotic, fidaxomicin (OPT-80), causes less alteration to the bowel microbiota of Clostridium difficile-infected patients than does vancomycin. Microbiology 156: 3354––3359 [CrossRef] [PubMed].
-
Wiedemann I., Breukink E., van Kraaij C., Kuipers O. P., Bierbaum G., de Kruijff B., Sahl H. G.. ( 2001;). Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity. J Biol Chem 276: 1772––1779 [CrossRef] [PubMed].
-
Wilson K. H., Perini F.. ( 1988;). Role of competition for nutrients in suppression of Clostridium difficile by the colonic microflora. Infect Immun 56: 2610––2614 [PubMed].
-
Wiström J., Norrby S. R., Myhre E. B., Eriksson S., Granström G., Lagergren L., Englund G., Nord C. E., Svenungsson B.. ( 2001;). Frequency of antibiotic-associated diarrhoea in 2462 antibiotic-treated hospitalized patients: a prospective study. J Antimicrob Chemother 47: 43––50 [CrossRef] [PubMed].

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/jmm/10.1099/jmm.0.000202dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/jmm AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/jmm/10.1099/jmm.0.000202dcterms_title,dcterms_subject-pub_serialIdent:journal/jmm AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....