
- « Previous Article
- Table of Contents
- Next Article »
f Antibiofilm efficacy of honey and bee-derived defensin-1 on multispecies wound biofilm
- Authors: Martin Sojka1,† , Ivana Valachova2,† , Marcela Bucekova3,4 , Juraj Majtan1,3,4
-
- VIEW AFFILIATIONS
-
1 1Department of Microbiology, Faculty of Medicine, Slovak Medical University, Limbova 13, 833 03 Bratislava, Slovakia 2 2Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia 3 3Institute of Zoology, Slovak Academy of Sciences, Dubravska cesta 9, 845 06 Bratislava, Slovakia 4 4Laboratory of Molecular Apidology and Apitherapy, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, 845 51 Bratislava, Slovakia
- Correspondence Juraj Majtan [email protected]
- First Published Online: 01 April 2016, Journal of Medical Microbiology 65: 337-344, doi: 10.1099/jmm.0.000227
- Subject: Prevention and Therapy
- Received:
- Accepted:
- Cover date:




Antibiofilm efficacy of honey and bee-derived defensin-1 on multispecies wound biofilm, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/jmm/65/4/337_jmm000227-1.gif
-
Many clinically relevant biofilms are polymicrobial. Examining the effect of antimicrobials in a multispecies biofilm consortium is of great clinical importance. The goal of this study was to investigate the effect of different honey types against bacterial wound pathogens grown in multispecies biofilm and to test the antibiofilm activity of honey defensin-1 (Def-1) in its recombinant form. A modified Lubbock chronic wound biofilm formed by four bacterial species (Staphylococcus aureus, Streptococcus agalactiae, Pseudomonas aeruginosa and Enterococcus faecalis) was used for evaluation of honey and recombinant bee-derived Def-1 antibiofilm efficacy. Recombinant Def-1 was prepared by heterologous expression in Escherichia coli. We showed that different types of honey (manuka and honeydew) were able to significantly reduce the cell viability of wound pathogens (Staphylococcus aureus, Streptococcus agalactiae and Pseudomonas aeruginosa) in mature polymicrobial biofilm. None of the tested honeys showed the ability to eradicate Enterococcus faecalis in biofilm. In addition, recombinant Def-1 successfully reduced the viability of Staphylococcus aureus and Pseudomonas aeruginosa cells within established polymicrobial biofilm after 24 and 48 h of treatment. Interestingly, recombinant Def-1 did not affect the viability of Streptococcus agalactiae cells within the biofilm, whereas both natural honeys significantly reduced the viable bacteria. Although Enterococcus faecalis was highly resistant to Def-1, Def-1 significantly affected the biofilm formation of Enterococcus faecalis and Streptococcus agalactiae after 24 h of treatment, most likely by inhibiting its extracellular polymeric substances production. In conclusion, our study revealed that honey and Def-1 are effective against established multispecies biofilm; however, Enterococcus faecalis grown in multispecies biofilm was resistant to both antimicrobials.
-
†
These authors contributed equally to this work.
-
Abbreviation: Trx thioredoxin
© 2016 The Authors | Published by the Microbiology Society
-
Alandejani T., Marsan J., Ferris W., Slinger R., Chan F.. ( 2009;). Effectiveness of honey on Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Otolaryngol Head Neck Surg 141: 114––118 [CrossRef] [PubMed].
-
Attinger C., Wolcott R.. ( 2012;). Clinically addressing biofilm in chronic wounds. Adv Wound Care (New Rochelle) 1: 127––132 [CrossRef] [PubMed].
-
Bachanová K., Klaudiny J., Kopernicky J., Simuth J.. ( 2002;). Identification of honeybee peptide active against Paenibacillus larvae larvae through bacterial growth-inhibition assay on polyacrylamide gel. Apidologie 33: 259––269 [CrossRef].
-
Basualdo C., Sgroy V., Finola M. S., Marioli J. M.. ( 2007;). Comparison of the antibacterial activity of honey from different provenance against bacteria usually isolated from skin wounds. Vet Microbiol 124: 375––381 [CrossRef] [PubMed].
-
Bílikova K., Huang S. C., Lin I. P., Šimuth J., Peng C. C.. ( 2015;). Structure and antimicrobial activity relationship of royalisin, an antimicrobial peptide from royal jelly of Apis mellifera. Peptides 68: 190––196 [CrossRef] [PubMed].
-
Bjarnsholt T., Kirketerp-Møller K., Jensen P. O., Madsen K. G., Phipps R., Krogfelt K., Høiby N., Givskov M.. ( 2008;). Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen 16: 2––10 [CrossRef] [PubMed].
-
Burmølle M., Webb J. S., Rao D., Hansen L. H., Sørensen S. J., Kjelleberg S.. ( 2006;). Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol 72: 3916––3923 [CrossRef] [PubMed].
-
Cerˇovský V., Bém R.. ( 2014;). Lucifensins, the insect defensins of biomedical importance: the story behind maggot therapy. Pharmaceuticals 7: 251––264 [CrossRef] [PubMed].
-
Cooper R., Jenkins L., Hooper S.. ( 2014;). Inhibition of biofilms of Pseudomonas aeruginosa by Medihoney in vitro. J Wound Care 23: 93––104 [CrossRef] [PubMed].
-
Costerton J. W., Stewart P. S.. ( 2001;). Battling biofilms. Sci Am 285: 74––81 [CrossRef] [PubMed].
-
Dalton T., Dowd S. E., Wolcott R. D., Sun Y., Watters C., Griswold J. A., Rumbaugh K. P.. ( 2011;). An in vivo polymicrobial biofilm wound infection model to study interspecies interactions. PLoS One 6: e27317 [CrossRef] [PubMed].
-
Davis S. C., Ricotti C., Cazzaniga A., Welsh E., Eaglstein W. H., Mertz P. M.. ( 2008;). Microscopic and physiologic evidence for biofilm-associated wound colonization in vivo. Wound Repair Regen 16: 23––29 [CrossRef] [PubMed].
-
Dosler S., Karaaslan E.. ( 2014;). Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Peptides 62: 32––37 [CrossRef] [PubMed].
-
Dosler S., Mataraci E.. ( 2013;). In vitro pharmacokinetics of antimicrobial cationic peptides alone and in combination with antibiotics against methicillin resistant Staphylococcus aureus biofilms. Peptides 49: 53––58 [CrossRef] [PubMed].
-
Elias S., Banin E.. ( 2012;). Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev 36: 990––1004 [CrossRef] [PubMed].
-
Fogaça A. C., Zaini P. A., Wulff N. A., da Silva P. I., Fázio M. A., Miranda A., Daffre S., da Silva A. M.. ( 2010;). Effects of the antimicrobial peptide gomesin on the global gene expression profile, virulence and biofilm formation of Xylella fastidiosa. FEMS Microbiol Lett 306: 152––159 [CrossRef] [PubMed].
-
Fujiwara S., Imai J., Fujiwara M., Yaeshima T., Kawashima T., Kobayashi K.. ( 1990;). A potent antibacterial protein in royal jelly. Purification and determination of the primary structure of royalisin. J Biol Chem 265: 11333––11337 [PubMed].
-
Grande Burgos M. J., Pulido R. P., Del Carmen López Aguayo M., Gálvez A., Lucas R.. ( 2014;). The cyclic antibacterial peptide enterocin AS-48: isolation, mode of action, and possible food applications. Int J Mol Sci 15: 22706––22727 [CrossRef] [PubMed].
-
Hajská M., Slobodníková L., Hupková H., Koller J.. ( 2014;). In vitro efficacy of various topical antimicrobial agents in different time periods from contamination to application against 6 multidrug-resistant bacterial strains isolated from burn patients. Burns 40: 713––718 [CrossRef] [PubMed].
-
Hwang I. S., Hwang J. S., Hwang J. H., Choi H., Lee E., Kim Y., Lee D. G.. ( 2013;). Synergistic effect and antibiofilm activity between the antimicrobial peptide coprisin and conventional antibiotics against opportunistic bacteria. Curr Microbiol 66: 56––60 [CrossRef] [PubMed].
-
Klaudiny J., Bachanová K., Kohutova L., Dzurova M., Kopernicky J., Majtan J.. ( 2012;). Expression of larval jelly antimicrobial peptide defensin1 in Apis mellifera colonies. Biologia (Bratisl) 67: 200––211 [CrossRef].
-
Kucera J., Sojka M., Pavlik V., Szuszkiewicz K., Velebny V., Klein P.. ( 2014;). Multispecies biofilm in an artificial wound bed – a novel model for in vitro assessment of solid antimicrobial dressings. J Microbiol Methods 103: 18––24 [CrossRef] [PubMed].
-
Kwakman P. H., Te Velde A. A., de Boer L., Vandenbroucke-Grauls C. M., Zaat S. A.. ( 2011;). Two major medicinal honeys have different mechanisms of bactericidal activity. PLoS One 6: e17709 [CrossRef] [PubMed].
-
Lee J. H., Park J. H., Kim J. A., Neupane G. P., Cho M. H., Lee C. S., Lee J.. ( 2011;). Low concentrations of honey reduce biofilm formation, quorum sensing, and virulence in Escherichia coli O157 : H7. Biofouling 27: 1095––1104 [CrossRef] [PubMed].
-
Lu J., Turnbull L., Burke C. M., Liu M., Carter D. A., Schlothauer R. C., Whitchurch C. B., Harry E. J.. ( 2014;). Manuka-type honeys can eradicate biofilms produced by Staphylococcus aureus strains with different biofilm-forming abilities. PeerJ 2: e326 [CrossRef] [PubMed].
-
Maddocks S. E., Lopez M. S., Rowlands R. S., Cooper R. A.. ( 2012;). Manuka honey inhibits the development of Streptococcus pyogenes biofilms and causes reduced expression of two fibronectin binding proteins. Microbiology 158: 781––790 [CrossRef] [PubMed].
-
Majtan J., Majtan V.. ( 2010;). Is manuka honey the best type of honey for wound care?. J Hosp Infect 74: 305––306 [CrossRef] [PubMed].
-
Majtan J., Klaudiny J., Bohova J., Kohutova L., Dzurova M., Sediva M., Bartosova M., Majtan V.. ( 2012;). Methylglyoxal-induced modifications of significant honeybee proteinous components in manuka honey: possible therapeutic implications. Fitoterapia 83: 671––677 [CrossRef] [PubMed].
-
Majtan J., Bohova J., Horniackova M., Klaudiny J., Majtan V.. ( 2014;). Anti-biofilm effects of honey against wound pathogens Proteus mirabilis and Enterobacter cloacae. Phytother Res 28: 69––75 [CrossRef] [PubMed].
-
Nidadavolu P., Amor W., Tran P. L., Dertien J., Colmer-Hamood J. A., Hamood A. N.. ( 2012;). Garlic ointment inhibits biofilm formation by bacterial pathogens from burn wounds. J Med Microbiol 61: 662––671 [CrossRef] [PubMed].
-
Oliva A., Furustrand Tafin U., Maiolo E. M., Jeddari S., Bétrisey B., Trampuz A.. ( 2014;). Activities of fosfomycin and rifampin on planktonic and adherent Enterococcus faecalis strains in an experimental foreign-body infection model. Antimicrob Agents Chemother 58: 1284––1293 [CrossRef] [PubMed].
-
Price L. B., Liu C. M., Melendez J. H., Frankel Y. M., Engelthaler D., Aziz M., Bowers J., Rattray R., Ravel J., other authors. ( 2009;). Community analysis of chronic wound bacteria using 16S rRNA gene-based pyrosequencing: impact of diabetes and antibiotics on chronic wound microbiota. PLoS One 4: e6462 [CrossRef] [PubMed].
-
Rhoads D. D., Wolcott R. W., Cutting K. F., Percival S. L.. ( 2007;). Evidence of biofilms in wounds and potential ramifications. . In Biofilms: Coming of Age, pp. 131––143. Edited by Gilbert P., Allison D., Brading M., Pratten J., Spratt D., Upton M.. Manchester, UK: BioLine;.
-
Shen L., Ding M., Zhang L., Jin F., Zhang W., Li D.. ( 2010;). Expression of Acc-Royalisin gene from royal jelly of Chinese honeybee in Escherichia coli and its antibacterial activity. J Agric Food Chem 58: 2266––2273 [CrossRef] [PubMed].
-
Shen L., Liu D., Li M., Jin F., Din M., Parnell L. D., Lai C. Q.. ( 2012;). Mechanism of action of recombinant acc-royalisin from royal jelly of Asian honeybee against Gram-positive bacteria. PLoS One 7: e47194 [CrossRef] [PubMed].
-
Smith D. M., Snow D. E., Rees E., Zischkau A. M., Hanson J. D., Wolcott R. D., Sun Y., White J., Kumar S., Dowd S. E.. ( 2010;). Evaluation of the bacterial diversity of pressure ulcers using bTEFAP pyrosequencing. BMC Med Genomics 3: 41 [CrossRef] [PubMed].
-
Sun Y., Dowd S. E., Smith E., Rhoads D. D., Wolcott R. D.. ( 2008;). In vitro multispecies Lubbock chronic wound biofilm model. Wound Repair Regen 16: 805––813 [CrossRef] [PubMed].
-
Truchado P., Gil-Izquierdo A., Tomás-Barberán F., Allende A.. ( 2009;). Inhibition by chestnut honey of N-acyl-l-homoserine lactones and biofilm formation in Erwinia carotovora, Yersinia enterocolitica, and Aeromonas hydrophila. J Agric Food Chem 57: 11186––11193 [CrossRef] [PubMed].
-
Tseng J. M., Huang J. R., Huang H. C., Tzen J. T., Chou W. M., Peng C. C.. ( 2011;). Facilitative production of an antimicrobial peptide royalisin and its antibody via an artificial oil-body system. Biotechnol Prog 27: 153––161 [CrossRef] [PubMed].
-
van den Driessche F., Rigole P., Brackman G., Coenye T.. ( 2014;). Optimization of resazurin-based viability staining for quantification of microbial biofilms. J Microbiol Methods 98: 31––34 [CrossRef] [PubMed].

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/jmm/10.1099/jmm.0.000227dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/jmm AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/jmm/10.1099/jmm.0.000227dcterms_title,dcterms_subject-pub_serialIdent:journal/jmm AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....